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1 Informacje podstawowe

Imię i nazwisko: Fryderyk Falniowski
ORCiD: https://orcid.org/0000-0002-1994-9019

Posiadane dyplomy, stopnie naukowe
doktor nauk matematycznych, specjalizacja: układy dynamiczne
Podmiot wydający: Rada Wydziału Matematyki i Informatyki Uniwersytetu

Jagiellońskiego
Data wydania: 24 kwietnia 2014 r.
Tytuł rozprawy: Uogólnione entropie dynamiczne i oparte na nich niezmienniki
Promotor: prof. dr hab. Wojciech Słomczyński1

Recenzenci: prof. dr hab. Tomasz Szarek, prof. dr hab. Jacek Tabor
Praca została wyróżniona przez Radę Wydziału Matematyki i Infor-

matyki UJ

magister matematyki (w ramach Indywidualnych Studiów Matematyczno-
Przyrodniczych)

Podmiot: Wydział Matematyki i Informatyki Uniwersytetu Jagiellońskiego
Tytuł pracy: Zbieżność entropii
Promotor: prof. dr hab. Wojciech Słomczyński
Rok: 2005

Informacja o dotychczasowym zatrudnieniu w jednostkach
naukowych lub artystycznych

W październiku 2005 roku rozpocząłem pracę w Katedrze Matematyki Akademii
Ekonomicznej w Krakowie (aktualnie Uniwersytet Ekonomiczny w Krakowie) na
stanowisku asystenta. Od 2014 roku pracuję w tej jednostce na stanowisku adiunkta.

1Tytuły naukowe podaję zgodnie ze stanem na rok składania wniosku.
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2 Omówienie osiągnięć, o których mowa w art.
219 ust. 1 pkt. 2 ustawy z dnia 20 lipca 2018
r. Prawo o szkolnictwie wyższym i nauce (Dz.
U. z 2021 r. poz. 478 z późn. zm.)

2.1 Główne osiągnięcie naukowe — cykl powiązanych te-
matycznie artykułów naukowych

2.1.1 Tytuł osiągnięcia

W pracy naukowej po uzyskaniu stopnia doktora koncentrowałem się na zagad-
nieniach związanych z teorią gier i optymalnością funkcji dobrobytu społecznego.
Rezultatem moich badań jest cykl artykułów pod zbiorczym tytułem

„Złożona dynamika zachowań agentów w sytuacjach decyzyjnych
z bodźcami zewnętrznymi a optymalizacja dobrobytu społecznego —
analiza przy użyciu narzędzi algorytmicznej i ewolucyjnej teorii gier”

Prace te wskazuję jako osiągnięcia naukowe, o których mowa w art. 219 ust. 1
pkt. 2 ustawy z dnia 20 lipca 2018 r. Prawo o szkolnictwie wyższym i nauce (Dz.
U. z 2021 r. poz. 478 z późn. zm.).

2.1.2 Lista publikacji składających się na osiągnięcie naukowe

Na cykl składa się dziewięć przedstawionych poniżej publikacji naukowych. Dla
każdej z nich podałem 5-letni współczynnik Impact Factor z 2023 roku (IF23, Clari-
vate 2024) oraz punktację z wykazu czasopism naukowych oraz recenzowanych ma-
teriałów z konferencji międzynarodowych opublikowaną przez Ministerstwo Nauki
i Szkolnictwa Wyższego (MNiSW) dnia 5 stycznia 2024 r. Dodatkowo uwzględ-
niłem najnowsze dane dotyczące cytowań (bez autocytowań) z baz Scopus oraz
Web of Science (WoS) na dzień 20 marca 2025 r. (na podstawie raportu cytowal-
ności sporządzonego przez Bibliotekę Uniwersytetu Ekonomicznego w Krakowie).
Dla każdej publikacji wskazałem również mój procentowy udział w jej tworzeniu.
Szczegółowy opis mojego wkładu w przygotowanie poszczególnych artykułów znaj-
duje się poniżej listy publikacji, a także w Załączniku 4. Stosowne oświadczenia
współautorów dotyczące mojego udziału w pracach zamieściłem w Załączniku 5.
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Część 1: Złożona dynamika zachowań agentów w grach

A1. T. Chotibut, F. Falniowski, M. Misiurewicz and G. Piliouras. Family of
chaotic maps from game theory. Dynamical Systems, 36(1), 48-63, 2021.
MNiSW: 40p., IF23: 0.5, liczba cytowań: Scopus: 16, WoS: 8

Mój wkład w przygotowanie publikacji oceniam na 30%.

A2. T. Chotibut, F. Falniowski, M. Misiurewicz and G. Piliouras. The route to
chaos in routing games: When is price of anarchy too optimistic? Advances
in Neural Information Processing Systems, 33, 766-777, 2020.

MNiSW: 200p., IF23: materiały konferencyjne2, liczba cytowań: Scopus: 17,
WoS: 7

Mój wkład w przygotowanie publikacji oceniam na 25%.

A3. J. Bielawski, T. Chotibut, F. Falniowski, G. Kosiorowski, M. Misiurewicz and
G. Piliouras. Follow-the-regularized-leader routes to chaos for online learning
in congestion games. In Proceedings of the 38th International Conference on
Machine Learning, volume 139 of PLMR, pages 925–935, 2021.

MNiSW: 200p., IF23: materiały konferencyjne3, liczba cytowań: Scopus: 16,
WoS: 9

Mój wkład w przygotowanie publikacji oceniam na 20%.

A4. J. Bielawski, T. Chotibut, F. Falniowski, M. Misiurewicz and G. Piliouras.
Memory loss can prevent chaos in games dynamics. Chaos 34(1): 013146,
2024.

MNiSW: 140p., IF23: 2.7, liczba cytowań: Scopus: -, WoS: 1

Mój wkład w przygotowanie publikacji oceniam na 25%.

A5. F. Falniowski and P. Mertikopoulos. On the discrete-time origins of the repli-
cator dynamics: from convergence to instability and chaos. International Jour-
nal of Game Theory, 54(1), 7, 2025.

MNiSW: 70p., IF23: 0.6, liczba cytowań: Scopus: -, WoS: -
2Ze względu na specyfikę Advances in Neural Information Processing Systems nie posiadają

IF. Jednak, zgodnie np. z Google Scholar, jego indeks h5 (czasopism najczęściej cytowanych
w ostatnich 5 latach) plasuje go w TOP10 czasopism (niezależnie od dyscypliny). Według 2022
CS Conference Impact Factors, dostępnym na stronie health-nlp.com, impact factor tej konferencji
jest szacowany na 23.27, zaś Impact Score z 2023r., wg research.com, to 40.6.

3Według wyliczeń Google Scholar indeks h5 plasuje je w TOP20 czasopism (niezależnie od
dyscypliny). CS Conference Impact Factors wskazuje impact factor tej konferencji na 26.66, Impact
Score z 2023r. to 30.1.
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Mój wkład w przygotowanie publikacji oceniam na 55%.

A6. F. Falniowski. Entropy-based measure of statistical complexity of a game
strategy. Entropy, 22(4), 470, 2020.

MNiSW: 100p., IF23: 2.2, liczba cytowań: Scopus: 2, WoS: 2

Część 2: Optymalizacja dobrobytu społecznego a mikrobodźce graczy

B1. O. Stark, M. Jakubek and F. Falniowski. Reconciling the Rawlsian and the
utilitarian approaches to the maximization of social welfare. Economics Letters
122(3), 439-444, 2014.

MNiSW: 100p., IF23: 2.1, liczba cytowań: Scopus: 3, WoS: 2

Mój wkład w przygotowanie publikacji oceniam na 33,3%.

B2. O. Stark, F. Falniowski and M. Jakubek. Consensus income distribution.
Review of Income and Wealth 63(4), 899-911, 2017.

MNiSW: 100p., IF23: 1.9, liczba cytowań: Scopus: 3, WoS: 3

Mój wkład w przygotowanie publikacji oceniam na 33,3%.

B3. O. Stark, J. Bielawski and F. Falniowski. A class of proximity-sensitive mea-
sures of relative deprivation. Economics Letters 160, 105-110, 2017.

MNiSW: 100p., IF23: 2.1, liczba cytowań: Scopus: 16, WoS: 16

Mój wkład w przygotowanie publikacji oceniam na 33,3%.

W ramach każdej z prac wieloautorskich razem ze współautorami: zaproponowałem
hipotezy badawcze, stworzyłem modele matematyczne, udowodniłem twierdzenia,
opracowałem wnioski, dokonałem przeglądu literatury. W każdej z prac, z wyłącze-
niem pracy B1, napisałem pierwszą wersję artykułu oraz uczestniczyłem w jego
edycji. W artykułach A3, A4, A5 byłem inicjatorem badań i autorem pierwszych
rezultatów. W badaniach, których efektem była praca B2 zauważyłem, że analo-
giczne wyniki jak w pracy B1 powinny być prawdziwe dla pochodzących od Atkin-
sona [7] użyteczności izoelastycznych. Główne pomysły pracy B3 były konsekwencją
dyskusji z dr. Bielawskim. Byłem autorem korespondencyjnym artykułów A4 i A5.

Prace w ramach omawianego cyklu mają charakter badań podstawowych i doty-
czą interakcji pomiędzy wyborami graczy optymalizujących zachowanie w warun-
kach ograniczonej racjonalności a optimum dobrobytu społecznego.4

4Wyniki uzyskane w pierwszej części cyklu mają bezpośrednie zastosowanie w problemach
związanych z obciążeniem/przeciążeniem rynków oligopolistycznych [2], modelowania migracji
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W pracach A1-A6, w których wraz ze współautorami skupiam się na ewolucji
zachowań uczących się graczy i ewolucji całego systemu, wykorzystuję narzędzia
teorii gier (w szczególności algorytmicznej i ewolucyjnej teorii gier), dyskretnych
układów dynamicznych i teorii ergodycznej. Narzędzia te pozwalają na precyzyjną
analizę długoterminowej ewolucji zachowań graczy i ewolucji całej populacji. Co
więcej, ze względu na interdyscyplinarną specyfikę problemu, przydatne okazują się
również narzędzia wywodzące się z teorii informacji (praca A6).

W pracach B1-B3, w których głównym celem była analiza ewolucji optimum
przy zmianie intensywności oddziałujących bodźców, używam klasycznych narzędzi
optymalizacyjnych.

Mój wkład w dyscyplinę ekonomii i finansów opisuję w części 2.2 i podsumowuję
w części 2.3.

2.2 Szczegółowy opis osiągnięć

Po uzyskaniu stopnia doktora w pracy naukowej koncentrowałem się na (teore-
tycznej) analizie dynamiki zachowań graczy (agentów, podmiotów gospodarczych)
o ograniczonej racjonalności oraz związku pomiędzy optymalnymi wyborami graczy
i maksymalizacją dobrobytu społecznego.

Przed przejściem do szczegółowego opisu osiągnięć zwrócę uwagę na kluczowe
rezultaty przeze mnie uzyskane oraz ich kontekst.

1. Przeprowadziłem szczegółową analizę ewolucji populacji graczy w systemie
ekonomicznym, gdzie dynamika gry zadawana jest poprzez proces uczenia
się uczestników gry. W pracach A1-A5 skupiłem się na grach zatorowych
(ang. congestion games). Wyniki te znajdują zastosowanie w problemach,
gdzie uczestnicy gry (uczestnicy rynku, podmioty gospodarcze) dysponując
niepełną informacją (lub będąc ograniczenie racjonalnymi) konkurują z innymi
podmiotami o zasoby. W szczególności można je wykorzystać w tak zróżnico-
wanej problematyce ekonomicznej jak: modele oligopoli [1, 2, 16, 32, 35, 78],
rynki kryptowalut [74], problem zmowy cenowej algorytmów [19, 23, 71], czy
gospodarka miejska (urban economics) [3, 91,110,117]

2. Pokazałem, że wzrost tempa uczenia się graczy (bądź zwiększenie wagi przykła-
danej przez nich do wyników z przeszłości) w grach zatorowych może do-

[15, 107], rynkach kryptowalut [74] czy problemach zatorowych w ruchu ulicznym [32]. Zas-
tosowanie tych wyników nie ogranicza się do ekonomii znajdując swoje zastosowanie w innych
naukach społecznych czy przyrodniczych — w obszarach, gdzie modeluje się ewolucję populacji
agentów — podmiotów gospodarczych, osób, użytkowników internetu czy genów. Warto zauważyć,
że prace A2, A3 zostały wskazane w technicznym raporcie dotyczącym zagrożeń dla wieloagen-
towych modeli zaawansowanej AI [54].
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prowadzić do destabilizacji systemu i chaotycznych zachowań zarówno jednos-
tek, jak i całej populacji graczy. Może to skutkować wysokimi kosztami dla
uczestników gry i nieefektywnością systemu.

3. Wskazałem problem nieprzewidywalności dynamik zadawanych przez wielo-
agentowe modele zaawansowanej sztucznej inteligencji (patrz [54], str. 30-31).

4. Uzyskałem wyniki, które rzuciły nowe światło na zależność pomiędzy optymal-
nymi wyborami egoistycznych graczy a zapotrzebowaniem systemu w sytuacji
gdy gracze są w ograniczonym stopniu racjonalni. Potwierdza to potrzebę
precyzyjnej analizy dynamiki gry wykraczającej poza standardową analizę
równowag, nawet gdy równowagi te są Pareto optymalnymi rozwiązaniami
gry.

5. Pokazałem, że w niektórych problemach teorii gier, np. opisujących tzw.
przeciążony oligopol [2], modele konkurencji na sieciach [32], modele ruchu
drogowego czy aukcji online [18, 29], możemy obserwować średnie (po cza-
sie) zachowanie systemu (populacji) sugerujące jego optymalność (zbieżność
do równowagi Nasha) przy jednoczesnych wysokich kosztach wynikających
z ewolucji systemu dzień po dniu.

6. Pokazałem, że zapominanie (dyskontowanie) przeszłości może mieć pozytywne
własności predykcyjne dla zachowań graczy. Wynik ten sugeruje, że ujedno-
licenie funkcji kosztów (wypłat) ze strategii, np. poprzez transfery pieniężne,
może zwiększać dobre własności predykcyjne systemu.

7. Zaproponowałem i przeanalizowałem model prostej gry populacyjnej z ho-
mogenicznymi graczami (agentami) uczącymi się przez wzmocnienie. Model
ten w naturalny sposób rozszerza się na przypadek agentów o różnorodnych
przekonaniach i różnym warunkowaniu swoich zachowań na podstawie histo-
rycznych danych [13]. Pozwala on wyjaśnić tzw. El Farol bar problem [6] i ma
bezpośredni związek z tzw. complexity economics [9, 25, 27,37,45].

8. Zaproponowałem teorioinformacyjną miarę złożoności strategii wykorzysty-
wanych przez graczy.

9. Wykazałem, że optymalne wybory planistów izoelastycznych (czyli np. utyli-
tarystycznych [55] czy rawlsowskich [94, 95]) mogą być zgodne jeśli agenci
uwzględniają w swoich funkcjach użyteczności bodźce zewnętrzne wynikające
z nierówności dochodowych. Presja nierówności dochodowych (i awersja jed-
nostek do nierówności) pozwala zunifikować wybory planistów. Stanowi to wy-
jaśnienie (w duchu Harsanyi’ego [57]) zgodności wyborów planistów konkuren-
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cyjne do pochodzącego od Arrowa wytłumaczenia bazującego na awersji do
ryzyka [5].

10. Na podstawie naturalnych aksjomatów, wyprowadziłem klasę uogólnionych
miar względnego niedostatku w systemie ekonomicznym, wrażliwych na zmia-
ny dochodowe wśród bogatszych. Są one z powodzeniem wykorzystywane do
pomiaru nierówności dochodowych [40,41,43,50,68,108,109].

W badaniach, których wynikiem były prace A1-A6 skoncentrowałem się na
analizie długookresowej dynamiki zachowań graczy (agentów) w grach rozgrywanych
wielokrotnie. W takich grach agenci mogą w trakcie gry uczyć się jej warunków,
wypłat czy zachowań innych uczestników gry. Dopuszczenie w modelu możliwości
uczenia się pozwala osłabić restrykcyjne założenia klasycznej teorii gier takie jak
racjonalność graczy. W serii artykułów napisanych ze współpracownikami z wiodą-
cych ośrodków zagranicznych analizowałem i szczegółowo opisałem, w jaki sposób
uczenie się graczy, a co za tym idzie ewolucja reguł gry i ograniczeń z nich wynika-
jących, może wpłynąć na złożone zachowania graczy i ewolucję systemu (lub stan
populacji). W pracach A1-A4 pokazałem ze współautorami, że w grach z poten-
cjałem [82], które uznawane są za gry o prostej dynamice, zachowania graczy mogą
być bardzo skomplikowane. W szczególności badałem konsekwencje wzrostu tempa
uczenia się, zapotrzebowania systemu czy wielkości populacji na dynamikę gry i wy-
bory graczy. Zrobiłem to dla modeli (i ich modyfikacji) pochodzących z uczenia
maszynowego, gier behawioralnych i ewolucyjnej teorii gier. Ponadto zbadałem im-
plikacje zapominania (dyskontowania) przez graczy przeszłości (algorytmy sEWA
[49, 66]) i konsekwencje przejawiania różnej awersji do ryzyka (algorytmy FTRL
[77]). Pokazałem, że nawet gdy analiza średniego zachowania populacji sugeruje
zbieżność do równowagi Nasha, zachowania graczy, jak i ewolucja systemu (czy całej
populacji graczy) dzień po dniu mogą być dowolnie skomplikowane i nieprzewidy-
walne.5 Uzupełniając to podejście, w pracy A5 napisanej z Panayotisem Mer-
tikopoulosem (CNRS, Francja) w kontekście gier populacyjnych porównałem dy-
namikę wprowadzaną w prostej grze antykoordynacyjnej przez uczących się graczy
z dynamiką wprowadzoną przez imitacyjny protokół rewizji [63, 106]. Wykaza-
łem, że ten model wykazuje chaotyczne zachowania. Pokazałem również, że zas-
tosowania modeli ewolucyjnej teorii gier w ekonomii fundamentalnie różnią się od
jej biologicznego pierwowzoru. Wreszcie, w pracy A6, zaproponowałem nową mi-
arę złożoności strategii, którą można wykorzystać do badania złożoności strategii

5Uzyskane wyniki można przenieść na grę z heterogenicznymi agentami, gdzie ich hetero-
geniczność jest konsekwencją zarówno ich różnorodnych przekonań, jak i różnej szybkości uczenia
się (intensywności wyboru) [13].
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używanych przez graczy w grach powtarzanych.6

Graczem analizowanym w pierwszej części cyklu może być dowolny podmiot:
człowiek, firma, podmiot gospodarczy. Teoria gier pozwala badać interakcje pomię-
dzy graczami. Ta interakcja może przeciwdziałać otrzymaniu (i utrzymaniu) op-
timum społecznego (mierzonego np. poprzez utylitarystyczną funkcję dobrobytu
społecznego). W pracach składających się na pierwszą część przedstawianego cyklu
pokazałem, że nawet gdy optimum społeczne jest tożsame z jedyną równowagą
Nasha populacja może być daleko od tej równowagi, generując znaczne koszty spo-
łeczne i podważając wnioski płynące z analizy systemu w równowadze. W drugim
podcyklu, na które składają się prace B1-B3, skupiłem się na wpływie bodźców na
graczy. W szczególności ze współautorami analizowałem jak uwzględnienie w wypła-
tach jednostek porównań dochodowych w populacji, może wpłynąć na wybory planis-
tów społecznych. Pokazałem, że jeśli członkowie populacji są odpowiednio czuli
na nierówności dochodowe, to planista będzie dążyć do wyrównania ich dochodów
niezależnie od własnego poziomu awersji do nierówności (prace B1, B2). W ostaniej
pracy cyklu (praca B3) zaproponowaliśmy uogólnioną miarę względnego niedostatku
czułą na różnice dochodowe wewnątrz populacji.

2.2.1 Złożona dynamika zachowań agentów w grach

Przechodzę teraz do szczegółowego opisu moich osiągnięć.
Postawienie problemu i jego kontekst. Teorię gier tradycyjnie rozwijano

jako teorię strategicznych interakcji między agentami, którzy są racjonalni. Odej-
ście od paradygmatu racjonalności podmiotów gospodarczych było możliwe m.in.
dzięki ewolucyjnej teorii gier, która — motywowana koncepcjami zaczerpniętymi
z ewolucji biologicznej — poprzez analizę zachowań graczy (kolejnych ich pokoleń),
którzy nie muszą być racjonalnymi ani nawet świadomymi decydentami, stara się
wyjaśnić, w jaki sposób równowaga może powstać i być dobrym odzwierciedleniem
rzeczywistych zachowań graczy w dłuższej perspektywie. Gdzieś pośrodku między
klasyczną a ewolucyjną teorią gier znajdują się modele algorytmicznej teorii gier.
Bazują one zazwyczaj na koncepcji uczenia się uczestników gry, które uwzględniają
zachowania adaptacyjne zorientowanych na cel (niekoniecznie wysoce racjonalnych)
graczy Różnorodność opisywanych w ten sposób podmiotów obejmuje graczy od
konsumentów do decydentów na Wall Steet, a modele mogą służyć do analizy roz-
maitych struktur od banków po rząd. Modele o których mowa nie opierają się
na założeniu, że gospodarka zbiega do z góry określonego stanu równowagi. Za-

6Prace A1-A3 oraz A6 były rezultatem grantu Miary statystycznej złożoności i nieprzewidy-
walności strategii oparte na pojęciu entropii w grach ekonomicznych, którego byłem kierownikiem.
Był on realizowany w ramach konkursu Sonata 11 w Narodowym Centrum Nauki.
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miast tego w dowolnym momencie każdy podmiot działa zgodnie ze swoją obecną
sytuacją, stanem otaczającego go świata i regułami determinującymi jego zachowa-
nia [46]. W każdym stanie układu agenci wybierają swoje działania według jakiegoś
algorytmu i aktualizują swoje strategie, korzystając z ustalonej reguły (uczenia
się, reagowania na otrzymywane bodźce). Dynamiczna perspektywa pozwala za-
tem lepiej uzasadnić podstawy teorii gier, koncepcje równowagi, oraz modelować
empirycznie zaobserwowane zachowania [97]. Kluczowym pytaniem z perspektywy
ekonomii jest to, jakie działania podejmują gracze pod wpływem danych bodźców.
Podejście polegające na uwzględnieniu w modelu uczenia się graczy zapewnia ścisły
kontekst i opis takich pytań, poprzez skoncentrowanie uwagi na wpływie uczenia
i adaptacji na ewolucję ich zachowań.

Podstawowym rozwiązaniem w teorii gier niekooperacyjnych jest równowaga
Nasha, spełniająca wymóg, by każdy agent wybrał strategię, która jest optymalna,
biorąc pod uwagę wybory pozostałych. Pomimo centralnej roli tej koncepcji w zas-
tosowaniach teorii gier w ekonomii, tradycyjne, racjonalistyczne uzasadnienie jej
zastosowania nie jest szczególnie przekonujące. Opiera się na nierealistycznych za-
łożeniach dotyczących uczestników gry. W przypadku dużych populacji powtarzanie
gry może jednak prowadzić do dynamiki gry zbieżnej do równowagi, nawet jeśli in-
formacje i możliwości uczestników gry są dość ograniczone [17,70,84,104]. Jednakże
począwszy od klasycznych wyników Harta i MacCollela [59–61] wiadomo, że nie ist-
nieją procedury uczenia zadające dynamiki zbieżne w kaźdej grze. Zatem nie można
liczyć na ogólne twierdzenia dotyczące zbieżności [10,59,61,62].

W badaniach, których wynikiem są prace A1-A4 koncentrowałem się na analizie
długoterminowego zachowania populacji graczy, którzy dokonują wyboru strategii
zgodnie z algorytmami uczenia poprzez wzmacnianie (ang. reinforcement learning),
powszechnie stosowanymi do modelowania ludzkich zachowań w kontekstach eko-
nomicznych.7 Najnowsze rezultaty ( [13,28,79,90,105,113], prace A1-A4) wskazują,
że złożone, charakteryzujące się brakiem stabilizacji, zachowanie graczy stosujących
uczenie przez wzmacnianie są raczej regułą niż wyjątkiem. Wówczas wybory graczy
mogą być nieoptymalne i skutkować dużymi kosztami dla agentów i społeczeństwa.
Eksperymenty opisywane w pracach przynależnych do nurtu teorii gier behawioral-
nych [65–67] potwierdzają wyniki prac A1-A4.

7Wybór uczenia poprzez wzmacnianie jest naturalny, a model ugruntowany i potwierdzony
badaniami. Erev i Roth [42,97] wykazali, że algorytmy uczenia się przez wzmacnianie mają lepszą
moc predykcyjną niż standardowa analiza równowagi i dokładnie opisują zachowanie podmiotów
gospodarczych. Niedawno Mäs i Nax [75] wykazali, że modele uczenia się przez wzmacnianie
często odpowiadają zachowaniom osób w grach eksperymentalnych, ponieważ osoby z większym
prawdopodobieństwem wybiorą określone działania po otrzymaniu dużej korzyści z ich wykonania.
Coraz więcej badań wskazuje, że w rzeczywistych scenariuszach uczenie się przez wzmacnianie
przewyższa klasyczną dynamikę adaptacyjną [23,81].
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Aby zrozumieć różnorodność możliwych zachowań agentów, warto analizować
możliwie proste gry. Prace A1-A5 skupiają się na grach, w których gracze (popu-
lacja graczy) mają do wyboru dwie (czyste) strategie (którymi są zasoby, ścieżki
itp.). Koszt realizacji każdej strategii rośnie wraz z liczbą (odsetkiem) uczest-
ników gry używających danej strategii. Grami, które modelują takie sytuacje są
gry zatorowe (ang. congestion games).8 Gry zatorowe to klasa gier wprowadzona
przez amerykańskiego ekonomistę Rosenthala [96], gdzie koszt strategii zależy od
całkowitej liczby (odsetka) wybierających ją agentów. Gry te znajdują zastosowanie
w różnych kontekstach aplikacyjnych, jak choćby w analizie problemu oligopolu [2],
modelowania sieci komunikacyjnych, zatorów komunikacyjnych czy procesów eko-
logicznych w siedliskach przyrodniczych (np. problem wspólnego pastwiska). Obok
szerokiego wachlarza zastosowań, wybór gier zatorowych jako przedmiotu analizy
wynika z faktu, że każda taka gra posiada swoją funkcję potencjału (jest więc tzw.
grą z potencjałem, [82]), której minimami są równowagi Nasha. Takie gry są bardzo
dobrze zbadane i uznawane zwykle za klasę gier o przewidywalnej dynamice. Ze
względu na możliwość dokładnej analizy i klarowność wniosków rozpatrywane w pra-
cach gry posiadają dokładnie jedną równowagę Nasha. Dzięki takiemu wyborowi
przedmiotu badań mogliśmy skupić się na bezpośrednich implikacjach dynamiki.

Przykład poglądowy. Zanim formalnie omówię otrzymane rezultaty, opiszę
je obrazowo za pomocą przykładu. Pozwoli on lepiej zrozumieć ekonomiczne kon-
sekwencje uzyskanych wyników. Rozpatrzmy oligopol, w którym gracze dysponują
ograniczoną informacją. Firmy maksymalizują swoje wypłaty (lub minimalizują
koszty) używając pewnego rodzaju algorytmów uczenia się.9 Firmy mają dwie
dostępne strategie (czyste) — mogą wybierać jeden z dwóch zasobów, z których
wypłata (koszt) zależy od tego jak wiele firm z niego korzysta. Wtedy kontekst
(i rezultaty) prac A1-A5 można rozumieć jako:

A1. duopol, w którym obie firmy mogą wybierać strategię mieszaną. Analizu-
jemy konsekwencje wzrostu tempa uczenia zgodnie z algorytmem uczenia ze
wzmocnieniem (wykorzystywanym szeroko w ekonomii [23, 36, 42, 56, 98]) na
zachowania firm i ewolucję systemu.

A2. oligopol z kontinuum firm (populacją graczy), w którym firmy używają je-
dynie strategii czystych, a odsetek firm używających danej strategii zadaje

8Mimo olbrzymiej literatury w języku angielskim znacząca część pojęć wykorzystywanych
w przedkładanym opisie nie ma ugruntowanego w środowisku nazewnictwa w języku polskim.
Dlatego wprowadzając pojęcie po raz pierwszy podaję tłumaczenie własne wraz z angielskim ory-
ginałem. W przypadku algorytmów podaję również akronim, który następnie stosuję w opisach.

9Takie podejście jest szczególnie istotne w gałęziach gospodarki, w których ceny aktualizowane
są często, np. w sposób ciągły, a ludzi zastępują wyspecjalizowane algorytmy [22,73].
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stan populacji. Analizujemy zachowania systemu w reakcji na wzrost zapotrze-
bowania systemu (np. wzrost wielkości popytu).

A3. analizujemy czy wyniki z A2 można przenieść na przypadek gdy firmy mają
inną (niź w pracy A2) awersję do ryzyka (używają innych regularyzatorów niż
entropia Shannona).

A4. badamy jaki wpływ na wyniki pracy A2 miałoby zapominanie (dyskontowanie)
przeszłości — gdy najistotniejsze dla graczy są najnowsze dane.

A5. oligopol z pracy A2, w którym firmy nie używają z góry zadanego algorytmu.
Zamiast tego aktualizują swoje wybory na podstawie porównywania uzyski-
wanych wypłat z wypłatami innych członków populacji.

Złożona dynamika zachowań agentów o ograniczonej racjonalności —
uczenie ze wzmocnieniem

Dynamika gry zatorowej z dwoma agentami wykorzystującymi algo-
rytm multiplikowanych wag. W pracy A1 analizowana jest dynamika gry za-
torowej, w której dwóch graczy ma dwie dostępne strategie czyste i obaj stosują
algorytm aktualizowanych multiplikatywnych wag (ang. Multiplicative Weights Up-
date (MWU))10 wybierając przy jego pomocy strategie mieszane w kolejnej grze.

Niech x będzie prawdopodobieństwem, że pierwszy gracz wybierze pierwszą stra-
tegię (drugą strategię wybierze więc z prawdopodobieństwem 1 − x) i niech y będzie
prawdopodobieństwem, że drugi gracz wybierze pierwszą strategię (zatem (x, 1 − x)
jest strategią mieszaną używaną przez pierwszego gracza, a (y, 1−y) przez drugiego).
Zakładamy, że koszt strategii jest proporcjonalny do jej obciążenia. Niech c(i, j)
będzie (oczekiwanym) kosztem gracza i wykorzystującego strategię o numerze j.
Aktualizacja (mieszanych) strategii graczy w chwili n + 1 w wyniku stosowania
MWU z tempem uczenia się ε ∈ (0, 1) jest zadana przez równania

xn+1 = xn(1 − ε)c(1,1)

xn(1 − ε)c(1,1) + (1 − xn)(1 − ε)c(1,2) ,

yn+1 = yn(1 − ε)c(2,1)

yn(1 − ε)c(2,1) + (1 − yn)(1 − ε)c(2,2) .

Jaka jest dynamika zachowań graczy w tej grze? Pokazujemy, że zależy ona od tego,
czy zaczynają od tej samej strategii, czy nie. W artykule wykazano, że jeśli obaj
gracze używają tej samej strategii mieszanej (ale nie czystej), wówczas dynamika

10MWU to algorytm zaproponowany jeszcze przez Hannana [56] o szerokich zastosowaniach
w uczeniu maszynowym, ekonomii czy biologii [4, 26,38].
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gry zależy od tempa uczenia się graczy. Tak więc, dopóki jest ono wystarczająco
małe, widzimy zbieżność do (jedynej) równowagi Nasha. Następnie, gdy tempo
uczenia przekroczy pewien próg, stabilność równowagi zostanie utracona. W przy-
padku symetrycznym gdy funkcje kosztu obu strategii są takie same, obserwujemy
zbieżność, z wyjątkiem co najwyżej przeliczalnej liczby warunków początkowych,
dla których iteracje trafiają w odpychającą równowagę Nasha, trajektorii układu
(czyli wybieranych przez graczy strategii mieszanych) do orbity okresowej o okre-
sie 2. W przeciwnym razie, gdy koszty są różne, istnieje progowa wartość tempa
uczenia się, po przekroczeniu której obserwować będziemy zachowania chaotyczne11,
zachowania okresowe o dowolnym okresie, skomplikowane zachowania trajektorii
w układzie dynamicznym i brak zbieżności do równowagi Nasha. Wynik uzyskany
w pracy A1 jest jednym z pierwszych wykazujących występowanie chaosu w grach
zatorowych. Co więcej, chaotyczne zachowania graczy mają miejsce, gdy średnio
gracze są blisko równowagi Nasha, tzn. średnie po czasie zachowanie graczy zbiega
do równowagi Nasha (niezależnie od ich tempa uczenia się). Z kolei gdy agenci zacz-
ną od różnych strategii początkowych, dynamika jest zbieżna do jednej z czystych
równowag, czyli (1, 0) lub (0, 1). Jeżeli pierwszy gracz częściej będzie korzystał
z pierwszej strategii, niż gracz drugi, wówczas dynamika gry zbiega do profilu strate-
gii, w którym pierwszy gracz zawsze będzie korzystał z pierwszej a drugi gracz
z drugiej strategii. Jeśli drugi gracz częściej stosuje pierwszą strategię niż gracz
pierwszy, to (w granicy) zamienią się rolami.

Wyniki pracy A1 implikują, że gdy gracze są homogeniczni i wybierają początko-
wo tą samą strategię mieszaną, odpowiednio szybka nauka prowadzi do złożonych
i nieprzewidywalnych zachowań uczestników gry. Praca ta dotyczyła gry z dwoma
uczestnikami. Pytanie co się wydarzy gdy w grze bierze udział więcej graczy? Co
gdy gracze dokonują różnych wyborów strategii początkowych w takiej sytuacji?
Odpowiedzi na te pytania można znaleźć w kolejnej pracy (praca A2).

Model z kontinuum graczy i problem utraty efektywności. Fundamen-
talnym problemem teorii gier, który wywarł ogromny wpływ na nauki społeczne, jest
zależność pomiędzy egoistycznymi wyborami jednostek (odzwierciedlanymi poprzez
równowagi Nasha) a rozwiązaniami społecznie optymalnymi (gdzie maksymalizowana
jest utylitarystyczna funkcja dobrobytu społecznego [57,58]). Jak zmierzyć cenę jaką

11W literaturze znaleźć można wiele definicji chaosu. W przedstawianym osiągnięciu pisząc
o chaosie będę miał na myśli chaos w sensie Li-Yorke’a, który gwarantuje istnienie nieprzeliczal-
nego zbioru punktów, które tworzą tzw. pary splątane — każde dwie trajektorie punktów z tego
zbioru zbliżają i oddalają się od siebie nieskończenie wiele razy. W kontekście omawianym w pra-
cach implikuje on inne chaotyczne cechy układu, takie jak orbity okresowe dowolnych okresów czy
dodatnią entropię topologiczną. Lokalnie można też zaobserwować czułą zależność dynamiki od
warunków początkowych.
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ponosi populacja w wyniku samolubnych decyzji poszczególnych graczy? Odpowiedź
na to pytanie można uzyskać porównując najgorszy stacjonarny scenariusz długoter-
minowy (koszt w najgorszej, najbardziej kosztownej, równowadze Nasha) z kosztem
w optimum społecznym systemu. Służy do tego miara zwana ceną anarchii (ang.
Price of Anarchy) [72], zdefiniowana jako:

PoA =
sup

x∈NE
SC(x)

min SC(x) ,

gdzie koszt społeczny profilu SC(x) jest sumą kosztów graczy (zawsze dodatnią),
a NE zbiorem równowag Nasha tej gry, lub w kategoriach funkcji dobrobytu społecz-
nego

PoA =
inf

x∈NE
SW (x)

max SW (x) ,

gdzie SW jest utylitarystyczną funkcją dobrobytu społecznego (czyli sumą wypłat
graczy, zawsze dodatnią).

Niska cena anarchii (bliska 1) oznacza, że wszystkie równowagi Nasha są bliskie
optimum społecznego, a zatem jakakolwiek zbieżna dynamika uczenia się wystar-
czy, aby (asymptotycznie) działanie (a co za tym idzie efektywność) systemu było
bliskie optimum. Oznacza to, że niska cena anarchii jest bardzo korzystna w prob-
lemach ekonomicznych z dużą liczbą podmiotów gospodarczych, gdzie ze względu
na złożoność problemu (i ograniczony wpływ na długofalowe zachowania graczy)
możemy mieć jedynie pewne gwarancje zbieżności dynamiki do równowagi, ale bez
informacji do której. Jednym z osiągnięć badań nad ceną anarchii było opraco-
wanie ścisłych (górnych) ograniczeń na PoA (przynajmniej w przypadku gier za-
torowych), które są niezależne od topologii sieci lub ilości graczy [99, 100]. Jed-
nocześnie uzyskane w ostatnich latach wyniki [30,31,47] sugerują, że wzrost wielkości
populacji (wzrost zapotrzebowania) może zmniejszyć cenę anarchii. Pokazano, że
jeśli zapotrzebowanie systemu rośnie, to najgorszy stabilny scenariusz (równowaga
o największym koszcie/najniższej wypłacie) nie jest odległy od optimum. Stąd anal-
iza równowag sugeruje, że efektywność systemu jest bliska optymalnej dla dużych
populacji. Jednak dopiero praca A2 była pierwszą, w której przeprowadzono sys-
tematyczne badanie wpływu zwiększenia całkowitego zapotrzebowania na zachowa-
nia uczących się graczy. W konsekwencji wskazany został niepożądany efekt wzrostu
wielkości zapotrzebowania systemu: nawet w przypadku najprostszych nietrywial-
nych gier — gier zatorowych z dwiema dostępnymi strategiami czystymi, gdy całko-
wite zapotrzebowanie systemu rośnie, dynamika uczenia nieuchronnie staje się nie-
stabilna, zazwyczaj chaotyczna.

Wynik przez nas uzyskany został opublikowany w materiałach jednej z najważniej-
szych konferencji w dziedzinie uczenia maszynowego (patrz np. conference-rankings)
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— Conference on Neural Information Processing Systems. W pracy analizuję ze
współautorami zachowanie graczy używających algorytmu MWU w grach zatorowych
z nieprzeliczalną populacją. Dla dowolnej bezatomowej12 gry zatorowej i dowolnego
tempa uczenia się, pokazujemy, że istnieje progowa pojemność systemu (wielkość
populacji) taka, że gdy całkowite zapotrzebowanie (popyt) ją przekroczy, system
staje się niestabilny, a wszelkie wnioski bazujące na analizie stanu równowagi nie
są aplikowalne do tej sytuacji. Udowodnione zostało istnienie zarówno zachowań
okresowych, jak i chaotycznych, i podano formalne gwarancje dotyczące warunków,
w jakich one powstają. Pomimo tej nieprzewidywalności, średnie przepływy (między
strategiami czystymi) w populacji wykazują regularność zbiegając do równowagi
niezależnie od zapotrzebowania systemu. Jednocześnie system jest nieefektywny,
a średni koszt w czasie może być dowolnie wysoki. Dzieje się to w sytuacji gdy cena
anarchii jest optymalna, czyli PoA = 1.

Model z pracy A2. Rozważamy bezatomową grę zatorową o dwóch strategiach
z kontinuum graczy (agentów), gdzie każdy z nich stosuje MWU do zaktualizowa-
nia swoich strategii. Wielkość całkowitego przepływu (zapotrzebowania) wszystkich
graczy wynosi N , a każdy gracz kontroluje jego infinitezymalną część. Oznaczmy
odsetek graczy przyjmujących pierwszą strategię w chwili n jako xn. Przyjmuje
się, że koszt każdej strategii (zasobu, połączenia, ścieżki) jest proporcjonalny do
obciążenia tej strategii. Oznaczając przez c(j) koszt wyboru strategii j (kiedy
frakcja x graczy wybiera pierwszą strategię), przy współczynnikach proporcjonal-
ności α, β > 0, otrzymujemy

c(1) = αNx, c(2) = βN(1 − x). (1)

W momencie n + 1 zakładamy, że gracze znają koszt strategii z chwili n, czyli
znają odsetek graczy używających każdej ze strategii (odpowiednio xn i 1 − xn).
Mając tę wiedzę agenci aktualizują swoje wybory. Ponieważ jest ich kontinuum, zre-
alizowany przepływ (podział) jest dokładnie opisany przez rozkład (xn, 1−xn). Ak-
tualizacji prawdopodobieństw dokonujemy za pomocą MWU, który zadaje odsetek
graczy używających w chwili n + 1 strategii pierwszej jako

xn+1 = xn(1 − ε)c(1)

xn(1 − ε)c(1) + (1 − xn)(1 − ε)c(2) = xn

xn + (1 − xn)(1 − ε)c(2)−c(1) (2)

dla ustalonego tempa uczenia się ε ∈ (0, 1).
W pracy pokazałem, że dla małych wartości zapotrzebowania systemu nadal

mamy zbieżność do przyciągającej równowagi Nasha.13 Niemniej jednak w przy-
12Czyli takiej, w której zmiana zachowania któregokolwiek gracza nie może wpłynąć na zmianę

wypłat innych graczy.
13Jedynym istotnym parametrem jest odsetek graczy stosujących pierwszą strategię w stanie
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padku dużego zapotrzebowania zachowanie systemu jest znacznie bardziej skom-
plikowane. Rozważmy najpierw przypadek, gdy koszty obu strategii opisuje ta
sama funkcja kosztu (α = β), a jedyną równowagą Nasha jest (1

2 , 1
2). Wtedy,

wraz ze wzrostem zapotrzebowania systemu równowaga Nasha, tożsama z optimum
społecznym (PoA = 1), traci stabilność, co podważa analizy dotyczące optymal-
nej długoterminowej efektywności systemu. Po utracie stabilności układ pozostaje
jednak w pewnym stopniu przewidywalny — wszystkie trajektorie (z wyjątkiem
przeliczalnie wielu wpadających w odpychającą równowagę Nasha) są przyciągane
przez orbitę okresową o okresie 2 symetryczną względem 1

2 . Jednocześnie średni
koszt społeczny jest bliski najgorszego przypadku dla gry jednoetapowej. Sytuacja
może być więc tak zła (tak kosztowna), jak to tylko możliwe.14 A co gdy funkcje
kosztu się różnią? Wtedy wzrost zapotrzebowania systemu doprowadzi do okre-
sowych zachowań o dowolnych okresach, chaotycznych zachowań graczy (chaos w sen-
sie Li-Yorke’a), a także (lokalnie) czułej zależności od warunków początkowych.
Pociąga to za sobą konsekwencje w grach bezatomowych. Gdy gra jest asymetryczna
(koszty są asymetryczne), czyli gdy równowaga wewnętrzna nie jest podziałem 50%-
50%, zwiększenie całkowitego zapotrzebowania systemu nieuchronnie doprowadzi do
chaotycznego zachowania, niezależnie od postaci funkcji kosztu. Zatem przewidze-
nie zachowania populacji graczy staje się prawie niemożliwe. Dodatkowo, choć przy
dużym obciążeniu systemu (dużej populacji) można zaobserwować pewne zachowa-
nia okresowe, to nawet niewielkie zmiany wartości parametrów mogą prowadzić do
zupełnie innego zachowania.15 Co zaskakujące, wszystko to dzieje się, gdy za-
chowanie średnie w czasie wydaje się optymalne — średnia po czasie zbiega do
(jedynej) równowagi Nasha niezależnie od szybkości uczenia się stosowanej przez
graczy, funkcji kosztów, na które patrzą, lub stanu początkowego systemu. Za-

równowagi. Pierwszą zaletą tego sformułowania jest to, że odsetek graczy stosujących każdą ze
strategii w stanie równowagi jest niezależna od poziomu N . Drugą zaletą jest fakt, że cena anarchii
tych gier wynosi dokładnie 1, niezależnie od α, β, i N . Dlatego nasz model stanowi naturalny
punkt odniesienia dla porównania analizy w stanie równowagi, która sugeruje optymalny koszt
społeczny, ze średnim (po czasie) kosztem społecznym wynikającym z braku zbieżności dynamiki
uczenia się, który, jak pokazujemy, może być tak duży jak to tylko możliwe.

14Upodmiotowiając uzyskany wynik powróćmy do przykładu z oligopolem. W tej sytuacji kon-
tinuum podmiotów gospodarczych (firm) tworzy populację graczy. Omawiany wynik oznacza, że
jeśli zapotrzebowanie systemu jest odpowiednio duże, to wybory populacji będą dalekie od opti-
mum (czyli podział 50% − 50%). Dla ustalenia uwagi jeśli przyciągająca orbita to {( 1

3 , 2
3 ), ( 2

3 , 1
3 )},

w oligopolu populacja będzie na zmianę realizować stan bliski pierwszemu bądź drugiemu z nich.
Prowadzić to będzie do suboptymalnych wypłat dla każdej z firm.

15W kontekście oligopolu z kontinuum graczy oznaczać to będzie, że wzrost zapotrzebowania
(popytu) może zdestabilizować zachowanie populacji firm, powodując złożone zachowania graczy,
chaotyczną ewolucję populacji firm. Spowoduje to znaczące straty. Jednocześnie analiza średniego
zachowania sugerować będzie dobre zachowanie dynamiki.
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tem patrząc z poziomu makro, na średnie zachowanie populacji, można sądzić, że
zachowanie systemu jest bliskie optymalnemu. Co więcej, średnie zachowanie popu-
lacji jest podobne do średniego zachowania w grach o sumie zero, gier uznawanych
za skrajnie odmienne od gier zatorowych. Niemniej jednak przyjrzenie się bliżej
(rzeczywistej) dynamice daje zupełnie inne wnioski. Wymienione rezultaty można
rozszerzyć na przypadek wielu strategii (zasobów, ścieżek) jak również na nielin-
iowe koszty (patrz Appendix pracy A2). Praca ta dała podstawy do dalszej ana-
lizy. W szczególności odpowiedzi wymagały pytania czy na chaotyczność systemu
ma wpływ wybór algorytmu postępowania bądź założenie homogeniczności popu-
lacji? W kolejnych pracach badaliśmy jaki wpływ na dynamikę zachowań graczy
(i populacji) ma odejście od tych założeń. W dalszej części opisu omówię konsek-
wencje wyboru innych algorytmów (praca A3) czy zapominania przeszłości (praca
A4). Zanim to zrobię warto jednak nadmienić, że wyniki tu przedstawione można
uogólnić na przypadek heterogeniczny. W artykule [13], przyjętym do publikacji
w Proceedings of National Academy of Sciences, formalnie (analitycznie) udowod-
niliśmy zjawisko pojawienia się „inteligencji zbiorowej” będącej konsekwencją dy-
namiki uczenia się w dużej populacji graczy w grze inspirowanej problemem El
Farol Bar [6].16 W naszym modelu każdy gracz uczy się i dostosowuje swoje strate-
gie w dyskretnym czasie, zgodnie ze standardową klasą MWU. Model dostarcza dwa
źródła heterogeniczności w populacji graczy. Po pierwsze, każdy gracz może zacząć
od różnych przekonań co do tego, jakie działanie powinien wybrać. Aby uwzględnić
tę zmienność każdemu graczowi przypisaliśmy własny typ. Po drugie, każdy typ
gracza ma swoją własną intensywność adaptacji, czyli szybkość uczenia się; niek-
tórzy gracze mogą szybko dostosować się do sygnałów dotyczących kosztów (szybko
uczący się), podczas gdy inni mogą wykazywać większą cierpliwość w aktualizowa-
niu swoich przekonań (wolno uczący się gracze). Stan populacji opisuje rozkład
prawdopodobieństwa przekonań wśród wszystkich typów graczy, których może być
skończenie lub nieskończenie wiele, co odpowiada heterogenicznym zachowaniom
związanym z uczeniem się. Wedle naszej wiedzy to pierwszy taki model z różnymi
źródłami heterogeniczności graczy. Jednocześnie analitycznie pokazaliśmy w nim, że
skomplikowana, nieprzewidywalna dynamika uczenia się w wysoce heterogenicznej

16Jest to tematyka o fundamentalnym znaczeniu dla ekonomii, biologii matematycznej czy
sztucznej inteligencji. Model wieloagentowego uczenia się ze wzmocnieniem (MARL) jest klu-
czowy dla właściwej analizy zachowań graczy w skomplikowanych środowiskach. Niestety mno-
gość wyników dotyczących MARL nie poprawia znacząco zrozumienia prawdopodobnie najbardziej
znanego przykładu wieloagentowej algorytmicznej adaptacji w grach zatorowych, problemu El Farol
Bar [6]. Problem ten, sformułowany przez amerykańskiego ekonomistę Williama Arthura (będący
pierwotnie częścią dyskusji z Kennethem Arrowem i Paulem Krugmanem na temat podstaw teorii
ogólnej równowagi) ma u swoich podstaw pomóc analizować w kontekście nauk społecznych takie
koncepcje jak rozumowanie indukcyjne czy ograniczona racjonalność.
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populacji może wygenerować porządek makroskopowy (z perspektywy średniego za-
chowania), który jest zgodny z klasycznymi koncepcjami równowagi w teorii gier
(choć postać równowagi zależy m.in. od tempa uczenia się graczy). Jednak każdy
uczestnik gry ponosi wysokie koszty. Wynik ten pomaga w zrozumieniu dynamiki
zachowań graczy w problemie El Farol Bar.

Złożona dynamika zachowań a awersja do ryzyka

Kolejne rozważane przeze mnie zagadnienie dotyczyło złożonego zachowania graczy
o zróżnicowanej awersji do ryzyka. Choć algorytm MWU zadaje dynamikę gry
będącą dyskretnym odpowiednikiem dynamiki replikacyjnej jego waga (i uniwer-
salność zastosowań) wynika z jego optymalnych własności minimalizujących żal
[56, 101]. Stąd w sytuacjach gdy dostęp do informacji jest ograniczony gracze mają
motywację do jego używania. Problemem wymagającym analizy było czy destabi-
lizacja systemu obserwowana dla MWU jest konsekwencją użytego sposobu aktuali-
zowania zachowań graczy. W tym celu w pracy A3 analizowałem ze współautorami
szeroką klasę algorytmów podążania za uregularyzowanym liderem (ang. Follow-
the-regularized-leader (FTRL)). Pokazujemy w niej, że wyniki uzyskane dla MWU
możemy rozszerzyć na sytuację gdy gracze inaczej warunkują swoje decyzje (np.
poprzez inne spojrzenia na ryzyko). Była to kolejna praca, która znalazła miejsce
na czołowej konferencji z zakresu uczenia maszynowego, tym razem International
Conference on Machine Learning.

FTRL to klasa algorytmów uczenia online, wykorzystywanych np. w aukcjach,
analizie ryzyka kredytowego czy modelowaniu genetycznym. Dynamika FTRL obej-
muje w szczególnych przypadkach takie algorytmy jak MWU czy algorytm gra-
dient descent [102]. W ramach FTRL strategia w każdej iteracji jest wybierana
poprzez minimalizację ważonej (według szybkości uczenia się) sumy całkowitego
kosztu wszystkich działań wybranych przez graczy i składnika regularyzującego. Za-
łóżmy, że gracze w chwili n + 1 znają koszt strategii w chwili n na bazie (xn, 1 − xn)
i aktualizują swoje wybory zgodnie z algorytmem FTRL. Mianowicie, w kontekście
opisanym w omówieniu pracy A2, w momencie n + 1 gracze wybierają pierwszą
strategię z prawdopodobieństwem xn+1 takim, że:

xn+1 = arg min
x∈(0,1)

(ε
∑
j≤n

[c1(xj) · x + c2(1 − xj) · (1 − x)] +R(x, 1 − x)) , (3)

gdzie c1(xj)·x+c2(1−xj)·(1−x), to całkowity koszt ponoszony przez populację graczy
grających przeciwko mieszance (x, 1−x) w momencie j, podczas gdy R : (0, 1)2 7→ R
jest stromą w zerze (r′(0) = −∞, gdzie r(x) = R(x, 1 − x)) symetryczną funkcją
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wypukłą, zwaną regularyzatorem, która reprezentuje „karę za ryzyko”: ten składnik
zadaje karę za nagłe zmiany strategii na podstawie niewielkiego przyrostu informacji
z poprzedniej iteracji gry.

Dynamika generowana przez algorytmy FTRL zależy od cech regularyzatora [80].
Strome regularyzatory są kluczowymi składowymi algorytmu gwarantującymi, że
proces nie zbiegnie do jednej z czystych strategii. Reprezentują one albo naturalną
niechęć gracza przed rezygnacją z pierwotnie wybranej strategii, albo celową ochronę
przed wybraniem strategii zbyt ryzykownych. Zauważmy, że gdyby w problemie (3)
nie było regularyzatora, populacja z prawdopodobieństwem 1 wybierałaby tę samą
strategię czystą, co skutkowałoby wysokimi kosztami. W algorytmach klasy FTRL
regularyzator jest powiązany z awersją graczy do ryzyka, tzn. im bardziej stromy
(czyli r rośnie szybciej w otoczeniu zera) jest regularyzator, tym bardziej gracz
jest zniechęcany do podejmowania ryzykownych zachowań. Wiadomo, że dynamika
FTRL z perspektywy czasu jest konkurencyjna względem najlepszej stałej akcji (jest
tzw. algorytmem typu no regret [56, 101]), pod warunkiem, że jest on wykonywany
z wysoce zoptymalizowaną szybkością uczenia się. W szczególnym przypadku gdy
wszyscy agenci używają (ujemnej) entropii Shannona jako regularyzatora, otrzy-
mujemy algorytm MWU. Czy możemy rozwinąć nasze zrozumienie dynamiki gry
i zachowań z MWU na bardziej ogólną dynamikę FTRL? Czy wyniki są jakościowo
podobne?

Odpowiedzią na te pytania zająłem się w pracy A3, w której pokazałem ze
współautorami, że nawet w prostych bezatomowych grach zatorowych z liniowymi
funkcjami kosztu, z dwoma zasobami i dowolną stałą szybkością uczenia się (z wyjąt-
kiem sytuacji gdy gra jest w pełni symetryczna) zwiększenie wielkości populacji
lub skali kosztów powoduje, że dynamika uczenia się staje się niestabilna i osta-
tecznie chaotyczna w sensie Li-Yorke’a. Ponadto, udowodniliśmy istnienie nowych,
niestandardowych zjawisk, takich jak współistnienie stabilnych równowag Nasha
i chaosu w tej samej grze. Dynamika zachowań w tej grze zależy więc od stanu
początkowego populacji — zależnie od niego obserwować możemy zbieżność do
równowagi bądź zachowania chaotyczne. Zatem (długoterminowy) koszt społeczny
zależy w sposób krytyczny od warunków początkowych. Na koniec, chociaż dy-
namika FTRL może być skomplikowana, udowodniliśmy, że podobnie jak dla MWU,
średnia po czasie wciąż zbiega do równowagi Nasha dla dowolnego wyboru szybkości
uczenia się, dowolnych liniowych funkcji kosztów i dowolnego stanu początkowego.
Zatem obserwujemy skrajnie skomplikowane zachowania graczy przy porządnym za-
chowaniu średnim.
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Złożona dynamika zachowań a zapominanie,
model z behawioralnej teorii gier

Kolejnym zagadnieniem, które podjąłem było zbadanie dynamiki populacyjnej gry
zatorowej z agentami używającymi algorytmów sEWA (ang. simplified Experience
Weighted Attraction, sEWA), ważnego narzędzia ekonomii eksperymentalnej [24,
49, 66, 67, 75]. Wyniki z wcześniej omówionych artykułów opisują dynamiki gry,
w której uczący się gracze kształtują swoje zachowanie jednakowo oceniając koszty
ze wszystkich poprzednich okresów. Mniej jasne jest to, jak dobrze to robią i czy
zadane ograniczenia zgadzają się z naszym najbardziej naturalnym rozumieniem
tego, jak ludzie faktycznie zachowują się, gdy stają przed strategicznymi decyzjami
w praktyce. W szczególności czy podejmując decyzję korzystają z pełnej historii,
czy może najważniejsze są ostatnie doświadczenia.

Pytanie, w jaki sposób ludzie uczą się modyfikować swoje strategie w grach
w świecie rzeczywistym, jest przedmiotem badań teorii gier behawioralnych [24,
65–67]. Przyciąganie ważone doświadczeniem (ang. Experience Weighted Attrac-
tion) jest kanonicznym modelem uczenia się w teorii gier behawioralnych. Pier-
wotnym celem wprowadzenia EWA było ujednolicenie modeli opartych na ucze-
niu się przez wzmacnianie i modeli opartych na przekonaniach (belief-based mod-
els). Jednakże, model ten zawiera zbyt wiele wolnych parametrów [24,103], dlatego
ostatnie prace — [49, 90], praca A4 — skupiły się na jej okrojonej wersji którą
nazywamy uproszczonym EWA (sEWA). Model ten dopuszcza tylko dwa parame-
try: intensywność wyboru i parametr utraty pamięci, który odgrywa rolę podobną
do roli stopy wykładniczego dyskontowania przeszłych wypłat.17 W artykule A4
rozważyłem ze współautorami ten model, w którym gracze używają logitowej naj-
lepszej odpowiedzi na oszacowanie historycznego wyniku każdego działania. Wpływ
przeszłych wypłat maleje tu wykładniczo. Co ważne, prace eksperymentalne w tej
dziedzinie sugerują, że powszechna jest duża intensywność wyboru [24]. Ta infor-
macja zestawiona z wcześniej uzyskanymi przeze mnie i moich współautorów wyni-
kami wskazywała na możliwość wystąpienia konfliktu pomiędzy standardowymi
założeniami stabilności modelu a przetestowanymi eksperymentalnie prawidłowoś-
ciami behawioralnymi. W jaki sposób wzajemne oddziaływanie intensywności wybo-
ru i utraty pamięci wpływa na wyniki zbieżności w prostych grach zatorowych?

Analizę interakcji pomiędzy utratą pamięci a asymetrią kosztów przeprowadzi-
liśmy w dobrze znanym z poprzednich prac kontekście bezatomowych gier zatorowych
z dwiema dostępnymi strategiami czystymi. Głównym wynikiem jest następujące
twierdzenie (patrz Rysunek 1):

17Współczynnik utraty pamięci można postrzegać również jako kolejną składową ograniczonej
racjonalności.
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Rysunek 1: Zachowanie układu dla dużych wartości inten-
sywności wyboru. Tak długo jak β

α+β
∈
(

1−σ
2−σ

, 1
2−σ

)
, prawie

wszystkie trajektorie są przyciągane przez orbitę okresową
okresu 2. Poza tym przedziałem obserwujemy zachowanie
chaotyczne.

Twierdzenie. Dla ustalonego współczynnika utraty pamięci σ ∈ [0, 1] (gdzie
σ = 0 oznacza brak utraty pamięci, a przy σ = 1 agenci używają po prostu najlepszej
odpowiedzi na ostatnią akcję) dla dużych wartości intensywności wyboru mamy dwa
odmienne zachowania zależne od asymetrii stosunku kosztów β

α+β
:

1. Jeśli funkcje kosztów obu strategii nie różnią się znacząco, tzn. β
α+β

∈ Iσ =
(1−σ

2−σ
, 1

2−σ
), to po utracie stabilności system pozostaje przewidywalny zbiegając

zawsze do orbity okresowej o okresie 2.

2. Jeśli β
α+β

znajduje się poza Iσ (czyli różnica w funkcjach kosztu jest znacząca),
to dla wystarczająco dużej intensywności wyboru system staje się nieprzewidy-
walny i chaotyczny (w sensie Li-Yorke’a).

Co więcej, wraz ze wzrostem utraty pamięci (wartości parametru σ) system staje się
przewidywalny dla szerszego zakresu funkcji kosztu.

Powyższe twierdzenie daje zasadnicze rozróżnienie długoterminowego zachowa-
nia systemu: w pierwszym przypadku chociaż dla dużych wartości intensywności
wyboru system nie stabilizuje się, pozostaje w miarę przewidywalny — nie ma więc
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znaczenia początkowy stan systemu (populacji), bo finalnie układ zbiega do tego
samego dwuokresowego zachowania. Gdy funkcje kosztu są wystarczająco podobne,
zapominanie (dyskontowanie) przeszłości powoduje, że koszty są nie do odróżnienia
z punktu widzenia gracza. W takim wypadku, kiedy intensywność wyboru jest
duża, populacja graczy (podmiotów gospodarczych) zmiarza do przyciągającej okre-
sowej orbity o okresie 2. Po pewnym czasie każda parzysta (nieparzysta) iteracja
umieści ją blisko swojej poprzedniej pozycji. Z kolei gdy funkcje kosztu istotnie się
różnią, system dla odpowiednio dużej intensywności wyboru jest chaotyczny. Sys-
tem jest w nieprzewidywalnym reżimie, z okresowymi orbitami o różnych okresach
i skomplikowaną, potencjalnie czułą na zaburzenia dynamiką — populacja ewoluuje
w sposób nieprzewidywalny.18

Komentarza wymaga kwestia równowagi w tej dynamice. Razem ze współau-
torami pokazałem, że ze względu na zaburzenie systemu, równowagi Nasha nie mogą
być stałymi punktami dynamiki. Jedyny punkt stały, który może być przyciągający
jest tzw. równowagą logitową.19 Równowaga ta leży między równym podziałem
a równowagą Nasha, do których zbliża się dla dwóch skrajnych wartości intensyw-
ności wyboru. Można to uzasadnić następująco: kiedy intensywność wyboru dąży
do zera, gracz jest obojętny na swoją wypłatę, a co za tym idzie, który zasób wybrać.
Ponieważ oba wybory są równie prawdopodobne, wybiera podział (1

2 , 1
2). Z drugiej

strony, gdy intensywność wyboru zmierza do nieskończoności, mała przewaga „his-
toryczna” danego wyboru sprawia, że wybór ten staje się bardziej prawdopodobny.
Stąd równowaga logitowa zbliża się wtedy do równowagi Nasha. Wzrost inten-
sywności wyboru przybliża nas więc do równowagi Nasha. Dzieje się to jednak
kosztem utraty stabilności. Razem ze współautorami pokazałem, że tak długo, jak
stały punkt przyciąga lokalnie, przyciąga również globalnie. Jednakże istnieje dolne
ograniczenie na intensywność uczenia, powyżej którego równowaga staje się odpy-
chająca. Od tego momentu nie możemy liczyć na zbieżność dynamiki, a analiza
stanu równowagi staje się bezprzedmiotowa. Ponadto wskazaliśmy, że ta wartość
progowa maleje wraz ze wzrostem współczynnika dyskontującego σ.

W pracy A4 wskazałem ze współautorami jeszcze jedno ważne rozróżnienie
pomiędzy przypadkiem pełnej pamięci a sytuacją gdy następuje jej utrata. W przy-
padku pełnej pamięci, przy dużej intensywności wyboru można tak zmienić warunki
gry (zróżnicować koszty zasobów/dróg), aby wymusić zbieżność do równowagi. Jed-
nakże, gdy zapominanie przeszłości wpływa na wybór graczy (σ > 0), wystarcza-
jąco duża intensywność wyboru nieuchronnie zdestabilizuje system i żadna zmiana
warunków gry go nie ustabilizuje. Przy utracie pamięci istnieje wartość progowa in-

18Ten wynik może sugerować, że okresowe zachowania, które widzimy w praktycznych prob-
lemach mogą być efektem ograniczonej pamięci, a zapominanie ma własności stabilizujące system.

19Równowaga logitowa jest ważnym narzędziem ekonomii eksperymentalnej [76].
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tensywności wyboru, po której przekroczeniu, gra staje się niestabilna bez względu
na koszty. Natomiast dla gier z pełną pamięcią (σ = 0), dla dowolnej intensywności
można znaleźć gry zatorowe, gdzie dynamika będzie zbieżna.

Finalnie zauważmy, że w przypadku σ > 0 planista społeczny mający wpływ
na modyfikację wypłat (np. poprzez opodatkowanie czy transfery pieniężne) może
dążyć do zbliżenia wypłat w celu większej przewidywalności systemu (trafieniu w za-
kres parametrów dla których mamy w najgorszym razie zbieżność do orbity okre-
sowej o okresie 2, patrz Rysunek 1). Zatem choć dyskontowanie przeszłości wyklucza
możliwość modyfikacji wypłat w taki sposób, aby wymusić zbieżność, daje ono alter-
natywny sposób na zagwarantowanie przewidywalnej dynamiki: zbliżenie kosztów
zasobów może wyprowadzić system z chaosu.

Mikroekonomiczne a biologiczne podstawy ewolucyjnej teorii gier

W ewolucyjnej teorii gier w zależności od kontekstu, dynamikę gry wyprowadza
się zwykle w jeden z następujących sposobów: (i) z biologicznego modelu ewolucji
populacji, zwykle formułowanego w kategoriach zdolności reprodukcyjnej danego
gatunku; (ii) na podstawie zestawu mikropodstaw ekonomicznych, które wyrażają
tempo wzrostu typu (lub strategii) w populacji za pomocą protokołu rewizji (model
ekonomiczny określający skłonność gracza do przejścia na strategię o wyższych
wypłatach); lub (iii) z algorytmu uczenia się zaprojektowanego w celu optymaliza-
cji krótkowzrocznego kryterium wydajności (takiego jak minimalizacja żalu gracza)
w skądinąd agnostycznym otoczeniu, w którym gracze nie znają gry, w którą grają.

Jedną z najczęściej badanych dynamik gry jest dynamika replikatorów Taylora
i Jonkera [111], prawdopodobnie spiritus movens ewolucyjnej teorii gier. Najpierw
wyprowadzona jako model ewolucji populacji biologicznych pod presją selekcyjną
w duchu Morana [83], dynamika replikatorów została następnie przeniesiona do
teorii ekonomii poprzez mechanizm znany jako imitacja proporcjonalna parami (ang.
pairwise proportional imitation, PPI), pierwotnie za sprawą Helbinga [63].20 Mniej
więcej w tym samym czasie pokazano, że MWU w przypadku ciągłym również
prowadzi do dynamiki replikatorów.

W pracy A5 razem z Panayotisem Mertikopoulosem postawiłem następujące,
naturalne pytanie: Czy koncepcyjnie różne modele leżące u podstaw dynamiki rep-
likatora prowadzą do jakościowo różnych wyników w czasie dyskretnym? A jeśli tak,
to w jakim stopniu? Szerzej: Czy ekonomiczne i biologiczne podstawy ewolucyjnej

20Model ten ma swoje korzenie w teorii rewizji protokołów (ang. revision protocols). Każdy
uczestnik gry czasami otrzymuje możliwość zmiany działań i w takich chwilach rozważa zmianę
strategii, porównując swoją wypłatę z wypłatą losowo wybranej osoby w populacji i zmieniając ją
z prawdopodobieństwem proporcjonalnym do korzyści wynikających ze zmiany [106].
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teorii gier są zgodne?
Można z dużym prawdopodobieństwem oczekiwać, że odpowiedzi na te pytania

będą pozytywne w przypadku dużych (ze względu na liczbę graczy czy liczbę dostęp-
nych strategii) gier, w których na dłuższą metę pojawia się wiele zróżnicowanych za-
chowań; z drugiej strony, w prostych grach zakres pojawiających się zachowań byłby
prawdopodobnie podobny jakościowo i różniłby się jedynie na poziomie ilościowym
(takim jak tempo zbieżności do równowagi itp.). Pokazaliśmy, że to założenie jest
zbyt optymistyczne, nawet w klasie gier z potencjałem (które posiadają najsilniejsze
gwarancje zbieżności w ramach dynamiki replikatora), a nawet w przypadkach, gdy
gra jest symetryczna, a gracze mają do dyspozycji jedynie dwie strategie (to naj-
mniejsza sensowna gra). W szczególności rozważaliśmy przypadek symetrycznego
losowego dopasowywania w grze antykoordynacyjnej 2 × 2 i pokazaliśmy, że różne
źródła dynamiki replikatora w czasie dyskretnym wykazują jakościowo różne za-
chowania:

1. W biologicznym modelu konkurencji wewnątrzgatunkowej dynamika zbiega do
równowagi Nasha dla dowolnej wartości kroku czasowego δ > 0.

2. W ekonomicznym modelu bazującym na protokole postępowania PPI istnieją
pewne konfiguracje równowagi, które globalnie przyciągają dla dowolnej wartoś-
ci δ, inne, dla których równowaga gry jest odpychająca dla pewnego zakresu
wartości δ, i jeszcze inne, które prowadzą, poprzez utratę stabilności równowagi
i podwojenie okresu, aż do pojawienia się chaosu Li-Yorke’a (dla innego za-
kresu wartości δ).

3. Wreszcie, w przypadku algorytmu MWU, wszystkie konfiguracje równowagi
stają się niestabilne dla odpowiednio dużego kroku czasowego δ i jeśli korzyści
z porzucenia najbardziej obciążonego wyboru nie są równe, chaos Li-Yorke’a
pojawia się za każdym razem, gdy krok czasowy przekracza pewien próg za-
leżny od dokładnej pozycji równowagi gry.

Pokazałem więc, że wyniki ekonomicznego modelowania charakteryzują się w tej
sytuacji nieprzewidywalnością, co stanowi wyraźny kontrast z uniwersalnie zbieżnym
krajobrazem dla omawianych gier, który pojawia się w ciągłym przypadku (i który
podziela jedynie model biologiczny). Ten wynik jest szczególnie intrygujący, ponie-
waż dostarcza konkretnej, ilościowej przestrogi co do zakresu, w jakim przy po-
mocy dynamiki replikatorów można prognozować długoterminowe zachowania jego
dyskretnych odpowiedników.

Co więcej, wynik ten wskazuje na odrębność mikropodstaw zastosowań i inter-
pretacji ewolucyjnej teorii gier w różnych kontekstach aplikacyjnych. W modelu
biologicznym widzimy zbieżność do równowagi Nasha niezależnie od długości cyklu
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ewolucyjnego. W modelach ekonomicznych zbieżność do równowagi Nasha zachodzi
dla takiego samego zakresu szybkości rewizji/szybkości uczenia się. Jednakże ich
zachowania po utracie stabilności mogą być diametralnie różne. Na koniec warto
nadmienić, że wynik z pracy A5 można uogólnić np. pokazując, że chaotyczne
zachowania mogą występować w grach jeśli tylko gracze wykorzystują protokoły
imitacyjne (których reprezentantem jest PPI) [12].

Miara złożoności strategii w grach iterowanych

Optymalizacja kryterium wydajności, jak minimalizacja żalu czy rewizja włas-
nych wyborów poprzez porównanie swoich wypłat z innymi dostępnymi w popu-
lacji (protokoły rewizji), dają możliwość (dynamicznej) analizy ewolucji populacji,
której dokonałem we wcześniej omówionych pracach. Jednakże, pojedynczy gracze
zamiast używać algorytmu mogą starać się używać najlepszej odpowiedzi na (poten-
cjalne) wybory innych uczestników gry ucząc się efektywnie ich zachowań. Gracze
w grach iterowanych mogą używać skomplikowanych reguł [8, 69]. W jaki sposób
gracz powinien reagować na ich zachowania? W jaki sposób odróżnić zachowa-
nia (calkowicie) losowe od tych ustrukturyzowanych wynikających z jakiejś reguły?
Można założyć, że gracze preferują wykorzystywanie prostych strategii. Ale co takie
sformułowanie oznacza? W pracy A6 zaproponowałem narzędzie pozwalające anali-
zować takie problemy — miarę (statystycznej) złożoności strategii.

W grach powtarzanych strategia to zbiór planów działania zależnych od historii.
W literaturze przyjmuje się zazwyczaj, że gracze mogą realizować dowolną strategię
z określonego zestawu strategii. Choć założenie to może wydawać się niewiążące
w modelu, w którym każdy gracz ma dostęp do niewielu strategii, jest ono nierea-
listyczne w przypadku bardziej złożonych modeli, w których zestaw strategii zawiera
dużą liczbę możliwości, z których wiele jest na tyle skomplikowanych, że trudno je
wykorzystać. Dzieje się tak zwykle w przypadku gier powtarzanych – na każdym
etapie gracze grają w grę (nie)zależną od historii i dlatego zbiór wszystkich strate-
gii, a także równowag Nasha, może być ogromny [48]. Wielość równowag skłoniła
badaczy do skupienia uwagi na wybranych. Takie ograniczenia są raczej normą niż
wyjątkiem w modelach dynamicznych w ekonomii. Przeciwnik (konkurent) może
stosować złożone strategie, które są trudne do przewidzenia. Gracz może zatem
stanąć przed problemem wyboru najlepszej strategii wobec strategii przeciwnika,
której uczy się w trakcie powtarzanej rozgrywki. Im bardziej ustrukturyzowana
(złożona) jest strategia, tym trudniej jest przewidzieć, co zrobi przeciwnik i tym
trudniej znaleźć najlepszą odpowiedź. , Gracz potrzebuje więc sposobu na wykrycie
złożonych strategii.

Aby zapewnić wgląd w strukturę i złożoność strategii, w artykule A6 przyjrza-
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łem się tempu zbieżności entropii w grze powtarzanej. Powszechnie uważa się, że
powolne tempo zbieżności entropii jest oznaką złożonej struktury procesu [34]. Oczy-
wiście bardziej złożona strategia jest trudniejsza do przewidzenia. Dlatego strategie
o wolnym tempie zbieżności są uznawane za mniej przewidywalne. Stąd ograniczenie
zestawu możliwych strategii do zestawu strategii o ograniczonej nieprzewidywalności
może dać podstawy do dokładniejszego wglądu w teorię konkurencji długotermi-
nowej.

W pracy A6 zaproponowałem wprowadzenie nowej miary statystycznej złożonoś-
ci strategii opartej na teorioinformacyjnej koncepcji nadwyżki entropii [34, 52, 53]
i tempa zbieżności [33]. Patrząc na tempo zbieżności entropii strategicznej (ang.
strategic entropy rate), pojęcia wprowadzonego przez Neymana i Okadę [85–88],
mierzy ona strukturę, regularność i przewidywalność rozgrywanych strategii. Wiel-
kość tą nazwałem nadwyżką strategicznej entropii (nadwyżką s-entropii, ang. excess
s-entropy). Wprowadzona przeze mnie miara służy do pomiaru złożoności statysty-
cznej i nieprzewidywalności strategii. Naturalne interpretacje tego miernika narzu-
cają jego zastosowanie np. w przypadku modeli ograniczonej pamięci (ang. bounded
recall) i reputacji.21

Ideą stojącą za, wprowadzoną przeze mnie, nadwyżką s-entropii jest obserwacja,
że gdy zmiany wyborów są częste, powinniśmy spodziewać się nieskończonej nad-
wyżki s-entropii, natomiast jeśli zmiany są rzadkie, nadwyżka s-entropii może być
skończona. To spostrzeżenie pozwala doprecyzować pojęcie prostej strategii — to
ta, której nadwyżka s-entropii jest skończona.22 Do analizy nadwyżki s-entropii
możemy wykorzystać metody pochodzące z teorii informacji i teorii układów dyna-
micznych. Patrząc przez pryzmat teorii informacji, nadwyżka s-entropii jest właś-
ciwym narzędziem do wykrywania i analizowania wzorców wytwarzanych w proce-
sie. Potrafi rozróżnić wzorce, które mają zbliżone cechy strukturalne. Nadwyżkę
s-entropii można wykorzystać do wykrywania i ilościowego określenia wzorców wyt-
warzanych podczas gry. Z kolei z perspektywy układów dynamicznych możemy
badać tempo zbieżności entropii np. przy użyciu narzędzi dynamiki symbolicznej.

21Podjęte badania i uzyskane wyniki wpisują się w rosnący obszar zastosowań koncepcji entropi-
jnych w ekonomii, [11, 20,21,64].

22Oczywiście jeśli gracze wyjściowo znajdują się w równowadze Nasha, nadwyżka s-entropii
(i złożoność strategii) będzie równa zero, ponieważ gracz nie będzie chętny do zmiany swojej
strategii. Jeśli jednak gracz nie znajduje się w równowadze Nasha od początku, może wybrać
jedną ze strategii mieszanych, która nie jest zbyt skomplikowana — na przykład taką, która nie
zmusza go zbytnio do zmiany wyboru w danym etapie gry. Zatem ograniczenie zbioru strategii
do tych z ograniczoną nadwyżką s-entropii wydaje się naturalnym wyborem. Nawet jeśli gracz
chce „zbliżyć się do równowagi Nasha”, może preferować te równowagi Nasha, do których zbieżne
są jego sekwencje strategii w grach jednoetapowych, stosując strategie z ograniczoną nadwyżką
s-entropii.
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Ponieważ gracze mogą preferować mało skomplikowane strategie (jako prostsze w im-
plementacji) w przyszłych badaniach nasuwa się potrzeba skoncentrowania uwagi na
strategiach z małą nadwyżką s-entropii, co narzuci dużą przewidywalność strategii
mieszanej i wpłynie na możliwość wyboru najlepszej odpowiedzi przez gracza z nie-
ograniczonym zbiorem strategii.

Obszarem badań, gdzie nadwyżka s-entropii może znaleźć zastosowanie są też
modele reputacji. Pogląd, że zaangażowanie jest wartościowe (tzw. commitment
strategies), wywarł głęboki wpływ na teorię gier niekooperacyjnych i wiele dziedzin
nauk społecznych. Naturalne wydaje się oczekiwanie, że agenci grający w dłu-
goterminowej rywalizacji będą opierać swoje decyzje na reputacji przeciwnika. Co
więcej, jeśli przeciwnik jest bardziej przewidywalny (rozkład prawdopodobieństwa,
którego używa, jest przewidywalny), wówczas gracz może znaleźć lepszą odpowiedź
na przewidywaną strategię lub może preferować grę z bardziej przewidywalnym
graczem. Warto dodać, że miary entropijne znajdują coraz szersze zastosowania
w modelach reputacyjnych [39,44,51].

2.2.2 Optymalizacja dobrobytu społecznego a mikrobodźce graczy

W pracach omówionych w poprzedniej części analizowałem zachowania graczy, po-
pulacji (i ewolucję tych zachowań) w obliczu bodźców pochodzących z przeszłych
wypłat oraz tego jak bardzo istotne są one dla agenta. Analizy dokonałem w sytu-
acji gdy stabilne rozwiązania gry były tożsame z optimum społecznym mierzonym
utylitarystyczną funkcją dobrobytu społecznego (PoA = 1). W teorii ekonomii
nadal żywa jest dyskusja dotycząca wyboru miary dobrobytu społecznego. Na
przeciwległych krańcach spektrum znajdują się utylitarystyczna funkcja dobrobytu
społecznego (zadana jako suma użyteczności/wypłat [57] ) oraz rawlsowska funkcja
dobrobytu społecznego (gdzie dobrobyt mierzony jest zamożnością najbiedniejszego
[94]). Czy da się pogodzić te skrajności? Czy cele planistów społecznych, którzy mogą
dokonywać transferów w populacji (poprzez np. opodatkowanie najbogatszych) będą
zgodne? W pracach B1 i B2 dałem ze współautorami odpowiedź twierdzącą pod
warunkiem, że jednostki (członkowie populacji) uwzględniają w swych wypłatach
nierówności dochodowe.

Kluczowym punktem odniesienia dla tej części przedstawianego cyklu publikacji
jest pojęcie względnego niedostatku. Zostało ono wprowadzone przez Yitzhakiego
[116] i bierze pod uwagę nierówności dochodowe (lub w bogactwie) w populacji.
Rozpatrzmy skończoną populację agentów {1, . . . , n}. Niech x = (x1, . . . , xn) będzie
wektorem dochodów (bogactwa) populacji agentów, gdzie xi ≥ 0 dla każdego i ∈
{1, . . . , n}. Wtedy względny niedostatek doświadczany przez jednostkę i w populacji

28



o rozkładzie dochodów x zadany jest jako

RDi(x) = 1
n

n∑
j=1

max{xj − xi, 0}. (4)

Oznacza to, że agent i doświadcza nierówności dochodowych poprzez porównywanie
się jedynie z bogatszymi od niego.

W pracach B1 i B2 badamy w jaki sposób zmienia się optimum różnych funkcji
dobrobytu społecznego w zależności od intensywności oddziaływania bodźców zew-
nętrznych, a dokładniej porównań dochodowych w populacji. Planista społeczny,
który dysponuje możliwością transferów wewnątrz populacji, optymalizuje wybory
zależnie od różnych funkcji dobrobytu społecznego: utylitarystycznej [57], rawls-
owskiej (gdy optymalizujemy dochód najbiedniejszego [94, 95]) czy Bernoullego-
Nasha [7]. Korzystając z narzędzia jakim jest miara względnego niedostatku Yitzha-
kiego, dokonujemy analizy, która wskazuje, że intensywność porównań dochodowych
między jednostkami może istotnie wpłynąć na rozwiązania dokonywane przez planis-
tów.

Czy da się pogodzić podejście rawlsowskie z utylitarnym? W artykule B1 przed-
stawiamy rozwiązanie tego dysonansu poprzez uwzględnienie w funkcji użyteczności
agentów niechęci do niskich dochodów względnych. Pokazujemy, że gdy waga niechęci
jednostki do niskich dochodów względnych (mierzonych względnym niedostatkiem)
jest większa od wartości krytycznej, co zależy od kształtu funkcji użyteczności
jednostek i początkowego rozkładu dochodów, rozwiązanie problemu maksymaliza-
cji utylitarystycznej funkcji dobrobytu społecznego pokrywa się z maksymalizacją
użyteczności jednostki znajdującej się w najgorszej sytuacji. W artykule przedsta-
wiliśmy zatem wyjaśnienie w duchu Harsanyi’ego23 i Rawlsa, godzące rawlsowskie
i utylitarne kryteria maksymalizacji dobrobytu społecznego. Nasz artykuł idzie
o krok dalej, pokazując nie tylko, że redystrybucja wzrasta gdy uwzględni się niechęć
jednostek do niskich dochodów względnych, ale także że możliwe jest, że w takiej
sytuacji cele utylitarnego planisty społecznego i planisty rawlsowskiego są zgodne.

Tym razem zawężamy się do sytuacji gdy agenci są jednostkami przynależą-
cymi do skończonej populacji. Na ich wypłaty składają się użyteczność wynika-
jąca z otrzymywanego dochodu oraz składnik, względny niedostatek, wynikający
z porównań dochodowych z jednostkami bogatszymi. Niech f : [0, ∞) 7→ R będzie
dwukrotnie rózniczkowalna, ściśle rosnąca i ściśle wklęsła. Wypłatę osoby i zada-
jemy jako

ui(x) = (1 − β)f(xi) − βRDi(x), (5)
23W ramach badań nad dobrobytem społecznym, Harsanyi [57] przypisuje znaczącą rolę porów-

naniom interpersonalnym w funkcji dobrobytu społecznego.

29



gdzie xi ≥ 0 jest dochodem agenta i. Upodobanie jednostki do dochodu bezwzględ-
nego jest ważone przez 1 − β , β ∈ [0, 1), a niechęć jednostki do niskich dochodów
względnych przez β. Oczywiście jeżeli danej osobie nie przeszkadza niski względny
dochód, to β = 0. Odpowiada to przypadkowi standardowego planisty utylitarysty-
cznego.

Niech wektor początkowych dochodów n osób będzie zadany przez e = (e1, . . . , en)
gdzie 0 < e1 ≤ . . . ≤ en. Planista społeczny może transferować dochody by uzyskać
to, co według niego stanowi optymalny rozkład dochodów populacji. Niech xi oz-
nacza możliwy dochód jednostki i po transferze (lub opodatkowaniu) oraz niech
t = ∑max{ei − xi, 0} oznaczają całkowity dochód, jaki przyjmuje planista socjalny
od osób fizycznych (zwany dalej „podatkiem”). Ze względu na koszty transferu
przekazywana jest tylko część podatku. Ułamek ten oznaczamy przez λ ∈ (0, 1].
Zatem zbiorem, na którym szukamy rozwiązania problemu planisty społecznego,
jest zbiór

Ω(e, λ) = {x : xi ≥ 0 dla dowolnych i, oraz λ
∑

max{ei−xi, 0} =
∑

max{xi−ei, 0}}.

Przeszukując zbiór dochodów, które można osiągnąć w ramach początkowej alokacji
e poprzez opodatkowanie niektórych osób, otrzymujemy podatek w wysokości t

i rozdzielamy go pomiędzy pozostałe osoby w taki sposób, że transfer wynosi λt.
Planista rawlsowski, mający na celu maksymalizację na zbiorze Ω(e, λ) wielkości
mini∈{1,...,n} ui(x), zdecyduje się opodatkować i przetrasferować podatek tak, aby
wyrównać wszystkie dochody. Z kolei utylitarysta nie biorący pod uwagę nierówności
dochodowych dokona trasferu jedynie gdy f ′(en)

f ′(e1) < λ i będzie opodatkowywał najbo-
gatszych oraz transferował dochód do nabiedniejszych tak długo aż xU∗

1 = . . . xU∗
i =

e, xU∗
i+1 = ei+1, . . . , xU∗

j = ej i xU∗
j+1 = . . . = xU∗

n = e, gdzie λ = f ′(e)
f ′(e) . Co za tym idzie

wybierze plan zgodny z wyborem planisty rawlsowskiego tylko gdy transfer jest bez-
stratny (λ = 1). Co zmienia uwzględnienie w wypłacie (równanie (5)) względnego
niedostatku? W pracy B1 pokazaliśmy, że dla dowolnej funkcji f i progu λ ist-
nieje β(e, λ) < 1 taki, że utylitarystyczny planista czuły na nierówności dochodowe
wybierze transfer prowadzący do wyboru rawlsowskiego jeśli β > β(e, λ).

Wynika stąd, że optymalna polityka podatkowa utylitarysty może pokrywać się
z optymalną polityką podatkową planisty patrzącego jedynie na dobrobyt najbied-
niejszego w populacji, gdy użyteczność zależy nie tylko od własnych dochodów jed-
nostki, ale także od dochodów innych osób. Innymi słowy, gdy utylitarny planista
społeczny uwzględni niechęć jednostek do niskich względnych dochodów, może w re-
zultacie dokonać wyborów zgodnych z planistą społecznym Rawlsa w zakresie op-
tymalnej polityki podatkowej i transferowej. Ta zgodność oferuje konkurencyjną do
tradycyjnej drogę pogodzenia dwóch interpretacji polityki fiskalnej, które wypły-
wałyby z obiektywnej perspektywy jednostki znajdującej się za rawlsowską zasłoną
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ignorancji. Arrow [5] sugerował, że oczekiwana użyteczność mierzona (utylitarną)
funkcją dobrobytu społecznego Harsanyi’ego zbiega do rawlsowskiej funkcji dobroby-
tu społecznego, jeśli wklęsłość użyteczności jednostki z dochodu jest wystarcza-
jąco duża. Praca B1 wskazuje jednak, że tę zgodność można przypisać zmianie
stanowiska utylitarnego planisty społecznego i nie musi być ona uzależniona od
szczególnej niechęci jednostek do ryzyka. Wynik ten pozwala sądzić, że włączenie
„użyteczności porównawczej” do optymalnych modeli podatkowych może urealnić
wyniki. Choć coraz więcej ekonomistów uznaje, że takie porównania stanowią is-
totny aspekt rzeczywistości, jak dotąd narzędzia porównawcze miały jedynie niewielki
wpływ na to, jak myślimy o porównywaniu optymalnych polityk podatkowych. Nasz
artykuł wskazuje, że zaniedbanie porównań może znacząco wpłynąć na błędy bench-
marków.

W pracy B2 rozwijam pomysły z pracy B1. Skupiając pod jednym izoelas-
tycznym „dachem” wszystkich kluczowych planistów społecznych, określam wraz
ze współautorami warunki gwarantujące, że planiści wybiorą równą dystrybucję
dochodów. Klasa izoelastycznych funkcji dobrobytu społecznego [7] pozwala nam
przedstawić różny stopień niechęci planistów społecznych do nierówności w podziale
dochodów ludności jako przypadki szczególne. Ze względu na atrakcyjne podstawy
aksjomatyczne i elastyczność w przyjmowaniu podstawowych kryteriów równości [7]
funkcja ta stała się popularną miarą dobrobytu społecznego w różnych dziedzinach,
począwszy od optymalnego opodatkowania po ekonomię zdrowia oraz ekonomię
środowiska. Naszym celem było odkrycie warunku, w którym wszyscy kluczowi
„izoelastyczni planiści społeczni” – utylitarysta, rawlsowianin, Bernoulli-Nash czy
jakikolwiek planista „pośredni” – wybiorą ten sam rozkład dochodów. Otrzymaliśmy
wynik silnej zgodności: gdy funkcje użyteczności jednostki odzwierciedlają wystar-
czająco duże obawy związane z niskim dochodem względnym, optymalna polityka
podatkowa wszystkich planistów społecznych jest zgodna. Jednomyślność ta obowią-
zuje dla całej klasy izoelastycznych funkcji dobrobytu społecznego z parametrem
niechęci do nierówności α ∈ [0, ∞), (określonym poniżej we wzorze (6)) Charak-
teryzujemy konsensus optymalnej dystrybucji dochodów – czyli rozkładu równych
dochodów – i stwierdzamy, że intensywność obaw jednostek związanych z niskim do-
chodem względnym wypiera preferencje dotyczące dystrybucji dochodów wyznawane
przez poszczególnych planistów społecznych. Co więcej identyfikujemy krytyczną
intensywność obaw jednostek związanych z niskim dochodem względnym, poniżej
którego każdy izoelastyczny planista społeczny inny niż rawlsowski wybierze inną,
nierówną dystrybucję. Formułujemy warunek konieczny i wystarczający pogodzenia
wszystkich izoelastycznych planistów społecznych. Co więcej, chociaż im wyższe α,
tym bardziej izoelastyczna funkcja dobrobytu społecznego przechyla się na korzyść
wyrównywania dochodów, stratny transfer zakłóca tę „skłonność” do dowolnego α.
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Włączenie jednostek obawiających się posiadania względnego niskiego dochodu przy-
wraca „władzę” (wzmacnia mandat) planisty społecznego w zakresie wyrównywania
dochodów.

Dokładniej, niech będzie dana populacja n ≥ 2 osobników (gdzie n jest liczbą
naturalną). Udowodniliśmy następujące twierdzenie.

Twierdzenie. Niech izoelastyczna funkcja dobrobytu społecznego będzie zdefin-
iowana jako

SWFα(x) =


[

1
n

n∑
i=1

u1−α
i (x)

] 1
1−α

, gdy α ≥ 0, α ̸= 1,

n

√
n∏

i=1
ui(x), gdy α = 1,

(6)

gdzie x = (x1, . . . , xn) ∈ Ω(e, λ), xi ≥ 0 jest dochodem agenta i, użyteczności
ui(x) > 0 dla dowolnego x ∈ Ω(e, λ), a α ∈ [0, ∞) jest parametrem niechęci do
nierówności stosowanym przez planistę społecznego.24 Wtedy w optimum społecznym
planista dokona równego podziału wtedy i tylko wtedy, gdy jeden z poniższych warun-
ków jest spełniony:

1. podział początkowy jest równy, tzn. e1 = . . . = en = x∗

2. planista jest planistą rawlsowskim, tzn. SWFα(x) = SWFR(x), gdzie SWFR

jest rawlsowską funkcją dobrobytu społecznego

3. β ≥ β∗(e, λ), gdzie β∗(e, λ) < f ′(x∗)(1−λ)
f ′(x∗)(1−λ)+λ+ 1−λ

n

< 1 i to ograniczenie nie zależy
od wartości α.

Twierdzenie to wskazuje, że preferencje jednostek dominują nad gustem planisty
społecznego. Dla całej klasy izoelastycznych funkcji dobrobytu społecznego ist-
nieje jeden krytyczny poziom intensywności obaw jednostek związanych z niskim
dochodem względnym, który prowadzi do równego rozkładu dochodów. Fakt, że
krytyczny poziom intensywności obaw jednostek związanych z niskim względnym
dochodem jest taki sam dla wszystkich poziomów izoelastycznego parametru awersji
do nierówności, sugeruje, że stopień obaw jednostek związanych z niskim względnym
dochodem odgrywa wyraźną i ważniejszą rolę w kształtowaniu optymalnej polityki
redystrybucji niż intensywność niechęci planisty społecznego do nierówności.

Praca zamykająca omawiany cykl jest głosem w dyskusji nad miarami nierówności
społecznych. W pracy B3 wyprowadziłem (ze współautorami) nową klasę uogól-
nionych miar względnego niedostatku. Innowacyjną cechą tej klasy jest to, że w za-

24Funkcja dobrobytu społecznego zadana przez (6) w szczególnych przypadkach daje utyli-
tarystyczną funkcję dobrobytu społecznego (α = 0), funkcję dobrobytu społecznego Bernoullego-
Nasha (α = 1) i Rawlsa (α = ∞).
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leżności od wartości parametru bliskości p, klasa jest w stanie przyjąć zarówno male-
jącą wagę (przypadek p > 1), jak i rosnącą wagę (przypadek p ∈ (0, 1)) przypisywaną
danym zmianom dochodów osób bogatszych od jednostki (wzorca), w zależności
od ich bliskości w podziale dochodów z jednostką. Powszechnie przyjętym założe-
niem w pracach, które uwzględniały względną deprywację, jest to, że porównania
z innymi osobami, które w podziale dochodów znajdują się na prawo (bogatszych)
od jednostki, liczą się jednakowo niezależnie od rzeczywistych nierówności. Jed-
nak badania [89, 93] wskazują, że ludzie przywiązują inną wagę do zmian w do-
chodach osób, które są dalej w podziale dochodów, niż do zmian w dochodach osób
o zbliżonych dochodach. W artykule B3 zakwestionowaliśmy konwencję równych
wag. Zaproponowaliśmy ogólny sposób ważenia, oparty na założeniu, że agenci
nie muszą przywiązywać tej samej wagi do zmian w dochodach osób znajdujących
się w różnej (dochodowej) odległości od osoby, której mierzona jest względna de-
prywacja. Operacjonalizacja podejścia niedoboru dochodów za pomocą zestawu
aksjomatów pozwaliła nam otrzymać klasę miar wrażliwych na ten czynnik.

Naszą miarę wprowadziliśmy poprzez zdefiniowanie relacji preferencji na zbiorze
wszystkich możliwych grup referencyjnych. Proponując zestaw naturalnych aksjo-
matów, pokazaliśmy, że jedyną miarą je spełniającą jest miara zadana jako

RDp(z, x) =
(

1
n

n∑
i=1

(max{xi − z, 0})p

) 1
p

(7)

gdzie z jest dochodem (lub bogactwem) jednostki ω, a x oznacza wektor bogactwa
wszystkich osób z jego grupy referencyjnej. Jednocześnie pokazaliśmy dwie cechy
nowej klasy miar: wrażliwość na bliskie dochody i wrażliwość na transfery pośród
bogatszych. Dla p ∈ (0, 1) miara (7) spełnia własność rosnącej wrażliwości na
bliskość, tzn. jednostka ω odczuje większą względną deprywację w wyniku wzrostu
dochodów jednostki, która (umieszczona na prawo od ω w podziale dochodów) jest
mu bliższa niż w wyniku takiego samego wzrostu dochodu osoby, która (umieszc-
zona na prawo od ω w rozkładzie dochodów) jest dalej. Dla p > 1 mamy własność
przeciwną — malejącej wrażliwości. Ponadto pokazaliśmy, że dla p ∈ (0, 1) jednos-
tka preferuje transfer wstępujący (pośród bogatszych od niego) — od biedniejszego
do bogatszego. Z kolei dla p > 1 jednostka preferuje transfer zstępujący — od
bogatszego do biedniejszego. Zaproponowana miara znalazła szerokie zastosowa-
nia [40,41,43,50,68,108,109].
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2.3 Podsumowanie osiągnięć w dyscyplinie ekonomii i finan-
sów

W tym podrozdziale podsumowuję swój wkład w rozwój dyscypliny ekonomia i fi-
nanse. Moje badania mają charakter badań podstawowych, które prowadzą do
rozwinięcia ogólnej wiedzy w dyscyplinie ekonomii i finansów.

Pokazałem, że

1. złożone zachowania chaotyczne mogą pojawić się w najprostszych nietrywial-
nych grach, w których gracze nie dysponują pełną informacją. Ten wynik
wskazuje na konieczność precyzyjnej analizy dynamiki gry wykraczającej poza
analizę jej równowag i wpisuje się w problem wyboru rozwiązania gry.

2. efektywności systemu (mierzonej ceną anarchii) nie można bezstratnie poprawić
poprzez zwiększenie wielkości populacji czy zapotrzebowania systemu. Zwięk-
szenie zapotrzebowania może doprowadzić do destabilizacji systemu i nieprzewi-
dywalnych zachowań graczy.

3. modele uczenia ze wzmocnieniem stosowane w ekonomii i finansach (np. MWU)
jak również modele eksperymentalnej ekonomii (sEWA) mają istotne ogranicze-
nia. W szczególności wymagają zazwyczaj dogłębnej analizy wykraczającej
poza zbadanie cech stacjonarnych rozwiązań gry.

4. złożone zachowania obserwowane w mikroskali lub w zachowaniu dzień po dniu,
może występować razem z pożądanym zachowaniem średnim również w grach
z potencjałem. W problemach z jakimi można się spotkać np. w tzw. prze-
ciążonych oligopolach [2], w modelowaniu ruchu drogowego czy aukcjach on-
line [18,29], możemy obserwować średnie w czasie zachowanie systemu sugeru-
jące jego optymalność (zbieżność do równowagi Nasha) z jednoczesnymi wyso-
kimi kosztami wynikającymi z zachowań systemu dzień po dniu.

5. zwiększona awersja graczy do ryzyka nie stabilizuje systemu (praca A3). Co
więcej, możliwa jest koegzystencja stabilnych rozwiązań (przyciągającej równo-
wagi Nasha) i chaosu — zachowanie populacji graczy zależy wtedy od stanu
początkowego populacji (systemu).

6. algorytmy sEWA mogą prowadzić do chaotycznych zachowań populacji graczy.
Są to pierwsze analityczne wyniki dla algorytmów sEWA, które potwierdzają
eksperymentalne wyniki znane dla gier losowych [49,90]. Ze względu na ścisły
związek algorytmów sEWA ze stosowanymi szeroko metodami q-learning [115]
stanowi to uzasadnienie dla pojawiania się cykli w problemach związanych np.
z tzw. zmową algorytmów [19,23,71,114].
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7. zapominanie (dyskontowanie) przeszłości może mieć pozytywne własności pre-
dykcyjne dla systemu (praca A4); W szczególności, jeśli planista społeczny
chce zwiększyć przewidywalność populacji agentów może starać się to uzyskać
poprzez zbliżenie wypłat/kosztów zasobów (np. poprzez dodatkowy podatek
związany z „lepszym” zasobem).

8. okresowe zachowania, które obserwujemy np. na rynkach finansowych mogą
być również konsekwencją ograniczonej pamięci uczestników rynku.

9. mikroekonomiczne podstawy ewolucyjnej teorii gier są fundamentalnie różne
od klasycznych pochodzących z nauk biologicznych i prowadzą do całkowicie
odmiennych zachowań.

10. dysonans pomiędzy optymalnymi wyborami różnych planistów społecznych
może zniknąć, gdy agenci są czuli na nierówności dochodowe (w bogactwie).
Wykazałem, że optymalne wybory planistów izoelastycznych (czyli np. utyl-
itarystycznych czy rawlsowskich) mogą być zgodne jeśli agenci uwzględniają
w swoich funcjach użyteczności bodźce zewnętrzne wynikające z nierówności
dochodowych. Pozwala to zunifikować wybory planistów i stanowi wyjaśnienie
w duchu Harsanyi’ego konkurencyjne do pochodzącego od Arrowa wyjaśnienia
z perspektywy awersji do ryzyka.

Zaproponowałem i przeanalizowałem

1. modele dyskretnej dynamiki opisujące zachowania uczących się graczy (pop-
ulacji graczy) warunkujących swoje zachowania minimalizacją żalu (MWU,
FTRL) lub porównaniami interpersonalnymi (PPI).

2. model dyskretnej dynamiki, w której gracze zapominają przeszłość (sEWA).

3. nową miarę statystycznej złożoności strategii, którą można stosować w mod-
elach reputacyjnych.

4. aksjomatycznie wyprowadzoną miarę względnego niedostatku wrażliwą na odleg-
łość porównań i na transfery pieniężne wśród bogatszych.

Skonstruowane modele umożliwiają formułowanie zaleceń i rekomendacji np. w

1. analizie oligopoli (np. do congested markets [2] czy w oligopolach na sieciach
[32]),

2. analizie tzw. zmowy algorytmów (ang. algorithmic collusion [19, 23,71]),

3. problemie wyboru portfela online [112] (wyniki pracy A3),
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4. optymalizacji wyborów w gospodarce miejskiej,

5. teoretycznych modelach systemów ekonomicznych,

6. wieloagentowych modelach sztucznej inteligencji [54].

Wyniki uzyskane dla gier zatorowych mają bezpośrednie zastosowanie w oligopo-
lach, aukcjach online, rynkach kryptowalut, problemie algorytmicznej zmowy ceno-
wej, czy szerzej w problemach gdzie algorytmy wykorzystywane są do wyboru strate-
gii (drogi, zasobu, ceny). Ponieważ algorytmy wykorzystywane są coraz szerzej pod-
czas dokonywania decyzji (i w procesach) na rynkach, dokładne ich zbadanie wydaje
się być koniecznością.

3 Informacja o wykazywaniu się istotną aktywnoś-
cią naukową albo artystyczną realizowaną w wię-
cej niż jednej uczelni, instytucji naukowej lub
instytucji kultury, w szczególności zagranicznej

3.1 Aktywność naukowa

Moja kariera naukowa związana była z dwiema uczelniami: studia magisterskie,
a następnie doktoranckie odbyłem na Wydziale Matematyki i Informatyki Uni-
wersytetu Jagiellońskiego. Jednocześnie, po ukończeniu studiów magisterskich, pod-
jąłem pracę w Akademii Ekonomicznej w Krakowie (aktualnie: Uniwersytet Eko-
nomiczny w Krakowie). Jeszcze w ramach studiów doktoranckich brałem udział
w Sieci układów dynamicznych i teorii ergodycznej (lata 2007-2010), co skutkowało
moim udziałem w szkołach w Polsce i za granicą (m.in. Holandia, Hiszpania).
W 2014 roku, po nawiązaniu współpracy z prof. Odedem Starkiem (Uniwersytet
Warszawski, Uniwersytety w Tuebingen, Bonn, Alpen-Adria University) brałem
udział w First Winter School on Migration na Georgetown University, School of
Foreign Service in Qatar w Doha.

Po uzyskaniu stopnia doktora w latach 2017-20 realizowałem, jako kierownik pro-
jektu, grant Narodowego Centrum Nauki uzyskany w ramach konkursu Sonata 11
pt. Miary statystycznej złożoności i nieprzewidywalności oparte na pojęciu entropii
w grach ekonomicznych, nr 2016/21/D/HS4/01798. Jego rezultatem są publikacje
A1-A3 oraz A6. Aktualnie jestem kierownikiem grantu nr 2023/51/B/HS4/01343
pt. Ewolucja zachowań podmiotów gospodarczych w warunkach ograniczonej racjon-
alności (szerszy opis znajduje się w części 3.2).
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Moja aktywność poza Uniwersytetem Ekonomicznym w Krakowie obejmuje nastę-
pujące działania:

• prowadzenie badań w międzynarodowych zespołach badawczych,

• uczestnictwo w międzynarodowych i krajowych konferencjach naukowych,

• uczestnictwo w seminariach naukowych,

• recenzowanie artykułów naukowych w międzynarodowych i krajowych cza-
sopismach.

3.2 Międzynarodowa współpraca badawcza

Od czerwca do września 2014 roku wizytowałem Uniwersytet Alpen-Adria w Klagen-
furcie realizując projekt w którym analizowałem wpływ nierówności dochodowych
na wybory agentów (konsekwencją tego stażu jest praca B2).

W latach 2017-22 byłem jednym z dwóch przedstawicieli Polski w Management
Committee międzynarodowej grupy badawczej European Network for Game The-
ory GAMENET prowadzonej przez Maastricht University (Holandia), finansowanej
przez COST Action. W ramach tej sieci brałem udział w pracach dwóch pod-
grup: Learning in large-scale distributed networks i Stochastic methods in game
theory. W listopadzie 2021 roku wizytowałem CNRS Inria Grenoble realizując tam
z prof. Panayotisem Mertikopoulosem projekt pt. Game dynamics and chaos. Jego
wynikiem jest publikacja A5. Ponadto od 2017 roku współpracuję z Georgiosem
Piliourasem (Singapore University of Technology and Design, Singapur; Google
DeepMind, Wielka Brytania), Michałem Misiurewiczem (Indiana University, USA)
oraz Thiparatem Chotibutem (Chulalongkorn University, Tajlandia). W ramach
tego interdyscyplinarnego zespołu realizuję projekt Non-equilbrium phenomena in
game theory. Współpraca ta zaowocowała pracami A1-A4, a także [13, 14]. Moim
staraniem w Katedrze Matematyki UEK powstała i intensywnie rozwija się grupa
badawcza skupiona na tematyce uczenia się w grach, oraz algorytmicznej i ewolu-
cyjnej teorii gier.

Otrzymane wyniki pomogły uzyskać na lata 2024-27 grant NCN w ramach
konkursu Opus 26 pt. Ewolucja zachowań podmiotów gospodarczych w warunkach
ograniczonej racjonalności (grant nr 2023/51/B/HS4/01343, funkcja: kierownik 4-
osobowego zespołu). Projekt ten będzie realizowany z wymienionym wyżej między-
narodowym zespołem poszerzonym o prof. Heinricha Naxa (UZH Zurich, Szwaj-
caria), Cesare Carissimo (ETH Zurich, Szwajcaria) oraz prof. Panayotisa Mer-
tikopoulosa (CNRS, Francja). Pierwsze uzyskane w ramach tego grantu wyniki są
już dostępne w formie preprintów [12,14].
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3.3 Uczestnictwo w konferencjach i seminariach naukowych

Prezentowałem wyniki swoich badań na ponad 30 konferencjach. Do najważniejszych
należą: 18th International Symposium on Dynamic Games and Applications, Hur-
wicz Workshop on Mechanism Design Theory, 34th Conference on Neural Infor-
mation Processing Systems, 38th International Conference on Machine Learning,
XXX European Workshop on Economic Theory; Learning, Evolution and Games.
Wygłosiłem też godzinny wykład na Games, Learning and Networks (Singapur,
kwiecień 2023). Szczegółowa lista referatów znajduje się w Załączniku 4.

Swoje rezultaty prezentowałem na następujących seminariach:

• Chaos i informacja kwantowa, seminarium na Wydziale Fizyki, Astronomii
i Informatyki Stosowanej Uniwersytetu Jagiellońskiego, kilkanaście referatów
w latach 2003-2020

• Matematyka Stosowana, seminarium na Wydziale Matematyki i Informatyki
Uniwersytetu Jagiellońskiego, kilka referatów w latach 2014-2021

• Układy Dynamiczne, seminarium na Wydziale Matematyki i Informatyki Uni-
wersytetu Jagiellońskiego, kilka referatów w latach 2005-2021

• seminarium Zespołu Naukowego Modelowania Ekonometrycznego na Wydziale
Ekonomiczno-Socjologicznym Uniwersytetu Łódzkiego, kilka referatów w la-
tach 2020-24

• Gry dynamiczne i informacja w grach - seminarium robocze (grudzień 2017,
UW; maj 2018, UŁ; wrzesień 2019, UEK)

• Seminarium CNRS Inria, Grenoble, listopad 2021

• posiedzenie naukowe Komisji Nauk Ekonomicznych Polskiej Akademii Umiejęt-
ności, 20 maja 2021r.

• zebrania Katedry Matematyki Uniwersytetu Ekonomicznego w Krakowie.

4 Informacja o osiągnięciach dydaktycznych, or-
ganizacyjnych oraz popularyzujących naukę lub
sztukę

4.1 Osiągnięcia dydaktyczne

• Prowadzę, bądź prowadziłem, następujące kursy na Uniwersytecie Ekonomicznym
w Krakowie:
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– Algebra i analiza matematyczna (kierunek: Informatyka stosowana, I
stopień)

– Algebra liniowa (kierunki: Informatyka i Ekonometria, Analityka gospo-
darcza, I stopień)

– Algorytmiczna teoria gier (kierunek: Informatyka stosowana, I stopień)

– Analiza matematyczna I, II (kierunki: Informatyka i Ekonometria, Ana-
lityka gospodarcza, I stopień)

– Elementy teorii gier (kierunek: Analityka gospodarcza, I stopień)

– Financial Mathematics (kierunek: Corporate Finance, I stopień)

– Incentives in Computer Science (kierunek: Applied Informatics, I stopień)

– Matematyka (kierunki: Ekonomia, Zarządzanie, I stopień)

– Obliczenia symboliczne i numeryczne w Maple (kierunek: Informatyka
i Ekonometria, I stopień)

– Rynki na sieciach (kierunek: Informatyka stosowana, I stopień)

– Teoria gier (kierunek: Analityka gospodarcza, I stopień)

– Teoria gier w naukach społecznych (kierunek: Nauki społeczne stosowane,
I stopień)

– Wprowadzenie do matematyki (kierunek: Informatyka stosowana, I stopień)

– Zaawansowane metody w analityce biznesowej (kierunek: Global Business
Services, I stopień).

• współtworzyłem materiały pomocnicze do kursów Zajęcia wyrównawcze —
wprowadzenie do matematyki oraz Analiza matematyczna i algebra liniowa na
kierunku zamawianym Informatyka stosowana.

• w latach 2020-25 byłem opiekunem studentów II roku studiów licencjackich
kierunku Analityka gospodarcza.

• byłem promotorem dwóch prac licencjackich (kierunek Analityka gospodar-
cza). Wyniki jednej z nich były prezentowane na konferencji studenckiej
i wydane w materiałach pokonferencyjnych (E. Faracik Algorytmy typu no-
regret w oligopolach Cournot i Betrtranda w [92]).

• w maju 2024 r. na zaproszenie prof. Dirka Hellbinga (ETH Zurich) i prof.
Heinricha Naxa (UZH) miałem wykłady w ramach kursu Controversies in
Game Theory, realizowanego wspólnie przez UZH i ETH.
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4.2 Osiągnięcia organizacyjne

Czynnie uczestniczyłem też w pracach organizacyjnych środowiska naukowego. Byłem

• członkiem komitetu organizacyjnego The XIXth European Workshop on Gen-
eral Equilibrium Theory (Kraków, czerwiec 2010)

• przewodniczącym komitetu organizacyjnego Andrzej Malawski Memorial Ses-
sion (październik 2017)

• przewodniczącym komitetu organizacyjnego konferencji Gamenet Action Con-
ference, Gamenet Conference Kraków 2018 (wrzesień 2018)

• przewodniczącym komitetu organizacyjnego szkoły dla doktorantów i młodych
naukowców Gamenet Training School on Recent Applications of Game Theory
(wrzesień 2018)

• członkiem komitetu organizacyjnego konferencji Nauki społeczne - matematy-
czne czy matematyzowalne pamięci prof. Andrzeja Malawskiego (wrzesień
2018)

• członkiem komitetu organizacyjnego Conference on Dynamical Systems cele-
brating Michał Misiurewicz’s 70th birthday (czerwiec 2019)

• członkiem Scientific Committee Gamenet Conference 2019 w Pradze (listopad
2019)

Biorę udział w Uczelnianym Zespole ds. Ewaluacji Jakości Działalności Naukowej.

5 Inne

5.1 Promotorstwo pomocnicze

Jestem promotorem pomocniczym w przewodzie doktorskim mgr Elżbiety Pliś pt.
Różnorodność a ewolucja systemu ekonomicznego napisanej pod kierunkiem dr hab.
Agnieszki Lipiety, prof. UEK. Praca uzyskała pozytywne recenzje, a obrona planowa-
na jest na 28 marca 2025 r.

5.2 Recenzje

Recenzowałem prace naukowe w czasopismach takich jak

1. Central European Journal of Economic Modelling and Econometrics, MNiSW:
70p., IF23: 0.2;
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2. Applied Mathematics and Computation, MNiSW: 100p., IF23: 3.5;

3. Journal of Difference Equations and Applications, MNiSW: 70p. , IF23: 1.1;

4. Reports on Mathematical Physics, MNiSW: 70p., IF23: 1;

5. Entropy, MNiSW: 100p., IF23: 2.4;

6. Graphs and Combinatorics, MNiSW: 70p., IF23: 0.6;

7. Journal of Classification, MNiSW: 140p., IF23: 1.8;

8. Chaos, MNiSW: 140p., IF23: 2.7;

9. Discrete and Continuous Dynamical Systems - series B, MNiSW: 100p., IF23:
1.3;

10. Electronic Commerce Research and Apllications, MNiSW: 100p., IF23: 5.9.

11. Annales Universitatis Paedagogicae Cracoviensis

Systematycznie zamieszczałem też recenzje w Mathematical Reviews prowadzonym
przez American Mathematical Society.
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markets. Management Science, 65(6):2467–2481, 2019.

[17] K. Binmore and L. Samuelson. An economist’s perspective on the evolution of
norms. Journal of Institutional and Theoretical Economics (JITE)/Zeitschrift
für die gesamte Staatswissenschaft, pages 45–63, 1994.

[18] A. Blum, V. Kumar, A. Rudra, and F. Wu. Online learning in online auctions.
Theoretical Computer Science, 324(2-3):137–146, 2004.

[19] Z. Y. Brown and A. MacKay. Competition in pricing algorithms. American
Economic Journal: Microeconomics, 15(2):109–156, 2023.

[20] A. Cabrales, O. Gossner, and R. Serrano. Entropy and the value of information
for investors. American Economic Review, 103(1):360–77, 2013.

[21] A. Cabrales, O. Gossner, and R. Serrano. A normalized value for information
purchases. Journal of Economic Theory, 170:266–288, 2017.

[22] H. Cai, K. Ren, W. Zhang, K. Malialis, J. Wang, Y. Yu, and D. Guo. Real-
time bidding by reinforcement learning in display advertising. In Proceedings
of the tenth ACM international conference on web search and data mining,
pages 661–670, 2017.

[23] E. Calvano, G. Calzolari, V. Denicolo, and S. Pastorello. Artificial intelligence,
algorithmic pricing, and collusion. American Economic Review, 110(10):3267–
3297, 2020.

[24] C. F. Camerer. Behavioral game theory: Experiments in strategic interaction.
Princeton University Press, 2011.

[25] A. Charpentier, R. Elie, and C. Remlinger. Reinforcement learning in eco-
nomics and finance. Computational Economics, pages 1–38, 2021.

[26] E. Chastain, A. Livnat, C. Papadimitriou, and U. Vazirani. Algorithms,
games, and evolution. Proceedings of the National Academy of Sciences,
111(29):10620–10623, 2014.

43



[27] S.-H. Chen and U. Gostoli. Coordination in the el farol bar problem: The role
of social preferences and social networks. Journal of Economic Interaction and
Coordination, 12:59–93, 2017.

[28] Y. K. Cheung and G. Piliouras. Vortices instead of equilibria in minmax
optimization: Chaos and butterfly effects of online learning in zero-sum games.
In Conference on Learning Theory, PMLR, pages 807–834, 2019.

[29] D. Coey, B. J. Larsen, K. Sweeney, and C. Waisman. Scalable optimal online
auctions. Marketing Science, 40(4):593–618, 2021.

[30] R. Colini-Baldeschi, R. Cominetti, P. Mertikopoulos, and M. Scarsini. The
asymptotic behavior of the price of anarchy. In International Conference on
Web and Internet Economics, pages 133–145. Springer, 2017.

[31] R. Colini-Baldeschi, R. Cominetti, and M. Scarsini. Price of anarchy for highly
congested routing games in parallel networks. Theory of Computing Systems,
63(1):90–113, 2019.

[32] R. Cominetti, J. R. Correa, and N. E. Stier-Moses. The impact of oligopolistic
competition in networks. Operations Research, 57(6):1421–1437, 2009.

[33] T. M. Cover. Elements of information theory. John Wiley & Sons, 1999.

[34] J. P. Crutchfield and D. P. Feldman. Regularities unseen, randomness ob-
served: Levels of entropy convergence. Chaos: An Interdisciplinary Journal
of Nonlinear Science, 13(1):25–54, 2003.

[35] B. De Borger and K. Van Dender. Prices, capacities and service levels in a
congestible Bertrand duopoly. Journal of Urban Economics, 60(2):264–283,
2006.

[36] A. Dolgopolov. Reinforcement learning in a prisoner’s dilemma. Games and
Economic Behavior, 144:84–103, 2024.

[37] D. Easley, J. Kleinberg, et al. Networks, crowds, and markets: Reasoning
about a highly connected world, volume 1. Cambridge University Press, 2010.

[38] O. Edhan, Z. Hellman, and D. Sherill-Rofe. Sex with no regrets: How sexual
reproduction uses a no regret learning algorithm for evolutionary advantage.
Journal of theoretical biology, 426:67–81, 2017.

[39] M. Ekmekci, O. Gossner, and A. Wilson. Impermanent types and permanent
reputations. Journal of Economic Theory, 147(1):162–178, 2012.

44



[40] A. A. El Anshasy, M. Shamsuddin, and M.-S. Katsaiti. Proximity-sensitive
relative deprivation and international migration intentions. Migration Letters,
19(6):833–841, 2022.

[41] A. A. El Anshasy, M. Shamsuddin, and M.-S. Katsaiti. Financial wellbeing
and international migration intentions: Evidence from global surveys. Journal
of Happiness Studies, 24(7):2261–2289, 2023.

[42] I. Erev and A. E. Roth. Predicting how people play games: Reinforcement
learning in experimental games with unique, mixed strategy equilibria. Amer-
ican Economic Review, pages 848–881, 1998.

[43] L. Esposito, S. M. Kumar, A. Villaseñor, and R. F. Souza. Relative deprivation
and Hey and Lambert’s motivation: Mixed methods evidence from Rio de
Janeiro. Journal of Income Distribution, 2023.

[44] E. Faingold. Reputation and the flow of information in repeated games. Econo-
metrica, 88(4):1697–1723, 2020.

[45] J. D. Farmer. Making Sense of Chaos: A Better Economics for a Better World.
Yale University Press, 2024.

[46] J. D. Farmer and D. Foley. The economy needs agent-based modelling. Nature,
460(7256):685–686, 2009.

[47] M. Feldman, N. Immorlica, B. Lucier, T. Roughgarden, and V. Syrgkanis.
The price of anarchy in large games. In Proceedings of the Forty-eighth Annual
ACM Symposium on Theory of Computing, STOC ’16, pages 963–976, New
York, NY, USA, 2016. ACM.

[48] D. Fudenberg and E. Maskin. The folk theorem in repeated games with dis-
counting or with incomplete information. In A long-run collaboration on long-
run games, pages 209–230. World Scientific, 2009.

[49] T. Galla and J. D. Farmer. Complex dynamics in learning complicated games.
Proceedings of the National Academy of Sciences, 110(4):1232–1236, 2013.

[50] K. Gero, A. Yazawa, N. Kondo, M. Hanazato, K. Kondo, and I. Kawachi.
Comparison of three indices of relative income deprivation in predicting health
status. Social Science & Medicine, 294:114722, 2022.

[51] O. Gossner. Simple bounds on the value of a reputation. Econometrica,
79(5):1627–1641, 2011.

45



[52] P. Grassberger. Toward a quantitative theory of self-generated complexity.
International Journal of Theoretical Physics, 25:907–938, 1986.

[53] P. Grassberger. Information and complexity measures in dynamical systems.
In Information dynamics, pages 15–33. Springer, 1991.

[54] L. Hammond, A. Chan, J. Clifton, J. Hoelscher-Obermaier, A. Khan,
E. McLean, C. Smith, W. Barfuss, J. Foerster, T. Gavenčiak, et al. Multi-agent
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